<html><head></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; font-size: medium; "><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; font-size: medium; "><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; font-size: medium; ">Hi Timo,<br></span></div></span></span></div><div><br class="webkit-block-placeholder"></div><div>Thanks for the quick reply! From heat_flux_stastics.cc (lines 96-103) there is</div><div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; min-height: 13px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; ">local_normal_flux</div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; ">+=</div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; "> -thermal_conductivity *</div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; "> (temperature_gradients[q] *</div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; "> fe_face_values.normal_vector(q)) *</div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 11px/normal Menlo; "> fe_face_values.JxW(q);</div></div>
<div><br></div><div>Is this the equation you are referencing below? If it is, I'm not sure what normal_vector(q) and JxW refer to. Is normal_vector(q) a directional multiplier?</div><div><br></div><div>If the only dimensional values in the equation above are thermal conductivity (W/(K*m)) and temperature (K), we would get the correct units (W/m). The listed output value of Watts, though, would have to be the integrated heat flux over each boundary.</div><div><br></div><div>John</div><div><br></div><br><div><div>On Jun 22, 2012, at 7:09 PM, Timo Heister wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><div>Hi John,<br><br><blockquote type="cite">Above, the heat flux through the boundary parts is listed in terms of Watts<br></blockquote><blockquote type="cite">(I assume "W" is for watts). Are these values in fact the heat flux values<br></blockquote><blockquote type="cite">integrated over the length of each boundary?<br></blockquote><br>Yes, for each boundary indicator we compute the heat flux through that<br>part of the surface and W stands for Watts.<br><br>Let us check if the units are correct:<br>The formula used is \int thermal_conductivity * (\nabla T) * normal * dS<br>Thermal conductivity has units W / (K*m), the derivative has K/s, [dS]<br>= m^(dim-1).<br><br>@Wolfgang: why is the answer here in Watt? I get W/s or W * m/s with<br>the formula above.<br><br>-- <br>Timo Heister<br><a href="http://www.math.tamu.edu/~heister/">http://www.math.tamu.edu/~heister/</a><br>_______________________________________________<br>Aspect-devel mailing list<br>Aspect-devel@geodynamics.org<br>http://geodynamics.org/cgi-bin/mailman/listinfo/aspect-devel<br></div></blockquote></div><br></body></html>