<div dir="ltr"><div><div><div><div>looks good to me.<br></div><br></div></div></div>cheers<br>Thomas<br></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Fri, Aug 30, 2013 at 3:09 PM, Wolfgang Bangerth <span dir="ltr"><<a href="mailto:bangerth@math.tamu.edu" target="_blank">bangerth@math.tamu.edu</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class="im"><br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
The reasoning may have been that we have to assemble a term of the form<br>
u . grad phi_i * phi_j<br>
with a total polynomial degree of<br>
stokes_degree + 2 * temp_degree - 1<br>
which would suggest a Gauss formula of degree<br>
temp_degree + stokes_degree/2<br>
rounded up if necessary. Does this sound reasonable? It would boil down to<br>
temp_degree + 1<br>
in the most common case.<br>
</blockquote>
<br></div>
This would be the attached patch. Makes sense?<span class="HOEnZb"><font color="#888888"><br>
W.</font></span><div class="HOEnZb"><div class="h5"><br>
<br>
-- <br>
------------------------------<u></u>------------------------------<u></u>------------<br>
Wolfgang Bangerth email: <a href="mailto:bangerth@math.tamu.edu" target="_blank">bangerth@math.tamu.edu</a><br>
www: <a href="http://www.math.tamu.edu/~bangerth/" target="_blank">http://www.math.tamu.edu/~<u></u>bangerth/</a><br>
<br>
</div></div></blockquote></div><br></div>