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1 Introduction

Magma Dynamics as described by McKenzie [1984] and others is most easily understood as
a consistent coupling of Darcy’s law for fluid flow to Stokes flow for the viscously deforming
solid phase [see Spiegelman et al., 2006]. An important aspect of this coupling, however, is
that viscous deformation of the solid can lead to dynamic pressure gradients that can affect
the flow of melt [e.g. Phipps Morgan, 1987, Spiegelman and McKenzie, 1987]. Thus it is
imperative that Stokes solvers for solid flow return accurate pressures (and more importantly
pressure gradients).

Here we present a useful pressure and flow benchmark for Stokes solvers that is relevant to
the problem of melt migration beneath a mid-ocean ridge where the divergent flow of solid near
the ridge axis can produce large pressure gradients if mantle viscosities are greater than∼ 1020

Pa s. While there is still considerable debate as to the appropriate rheology of the mantle in the
near sub-ridge region, a useful place to begin is iso-viscous pressure and velocity solutions as
these can be calculated rapidly in 2- and 3-D to spectral accuracy. This document lays out the
basic solutions and presents several matlab codes for calculating benchmark solutions.

2 General Equations for Incompressible Iso-viscous Stokes

Here we just consider boundary driven flow of an iso-viscous, incompressible fluid with an
arbitrary upper velocity boundary condition over an infinite half-space in cartesian coordinates
(these problems are easily extended to layered systems etc.).

In the absence of body forces, incompressible iso-viscous Stokes flow can be written

∇· V = 0 (1)

∇P = η∇2V (2)
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or taking the Curl of Eq. (2) to remove pressure

∇×∇2V = 0 (3)

With fixed velocity boundary conditions atz = 0 (the surface) andz →∞. Assuming cartesian
geometry, we can take the Fourier transform of Eqs. (1) and (3) in the horizontal to yield a
system of equations inz and horizontal wavevectorsk = kxi + kyj For example, Eq. (1)
becomes

ikxŨ + ikyṼ + DW̃ = 0 (4)

whereṼ(k, z) = Ũ i + Ṽ j + W̃k is the horizontal Fourier transform of the velocity field and
D = d

dz
is the derivative operator in the vertical. Likewise, Eq. (3) becomes

(D2 − k2)(ikyW̃ −DṼ ) = 0 (5)

(D2 − k2)(ikxW̃ −DŨ) = 0 (6)

(D2 − k2)(ikxṼ − ikyŨ) = 0 (7)

wherek2 = kT k and(D2−k2) is the Fourier transform of the Laplacian∇2. Equations (4)–(7)
can be rearranged to form a single 4th order constant coefficient ODE forW̃ which is solved
subject to boundary conditions and then transformed back to the space domain. Phipps Mor-
gan and Forsyth [1988] used this approach to produce some of the first 3-D solutions for the
flow near a ridge-transform-ridge intersection, and a similar 2-D spectral solution was used in
Spiegelman [1996] to calculate melt and solid flow beneath ridges. One of the main advantages
of the spectral solution over the standard corner-flow solution [e.g. Batchelor, 1967], is that the
corner-flow solution has a singularity in the pressure due to the discontinuity in velocity at
the ridge axis which makes it difficult to accurately calculate melt flow. However, the spectral
solution allows one to control the strength of the pressure singularity by smoothing out the
velocity at the ridge axis and producing numerically resolvable solutions.

We will demonstrate the solution and approach first in 2-D then use the 2-D solution to
consider the affect of 3-D ridge geometries as in Phipps Morgan and Forsyth [1988].

3 2-D pressure, velocity solutions

In 2-dimensions, we letV(x, z) = U i + Wk and choose boundary conditions

V(x, 0) = U0(x)i V(x,∞) = 0 (8)

such that the flow is driven entirely by the upper boundary. In 2-D Eqs. (4)–(7) reduce to

ikŨ + DW̃ = 0 (9)

(D2 − k2)(ikW̃ −DŨ) = 0 (10)

wherek = kx. These can be reduced to a single ODE inW̃ by multiplying Eq. (9) byik, Eq.
(10) byD and eliminatingŨ to yield

(D2 − k2)2W̃ = 0 (11)
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which has general solution

W̃ (k, z) = (c1 + c2z)e−|k|z + (c3 + c4z)e|k|z (12)

where |k| =
√

k2
x = ||k|| is positive to guarantee consistent behavior of all wavenumbers

with depth. Applying the boundary conditions that the vertical velocity vanishes atz = 0 and
z →∞ (i.e. W̃ (k, 0) = W̃ (k,∞) = 0). Then

W̃ (k, z) = c2ze
−|k|z (13)

Applying Eq. (9) gives
DW̃ = −ikŨ = c2(1− |k|z)e−|k|z (14)

and the boundary conditioñU(k, 0) = Ũ0 givesc2 = −ikŨ0. Finally, applying∇P = ∇2V
gives the full solution in the Fourier domain for velocity and pressure

Ũ = Ũ0(1− |k|z)e−|k|z (15)

W̃ = −ikŨ0ze
−|k|z (16)

P̃ = −2ikŨ0e
−|k|z (17)

with individual components of the pressure gradient given by

P̃x = 2Ũ0|k|2e−|k|z (18)

P̃z = 2iŨ0k|k|e−|k|z (19)

Transforming back to the space domain gives the full solution for velocity, pressure and∇P
to spectral accuracy.

3.1 Implementation

The matlab functionspecRidge2D implements the above algorithm given a horizontal ve-
locity for the upper boundary. Because the discrete Fourier transform assumes periodicity, this
function allows for a very large periodic domain for the boundary condition, but returns veloci-
ties and pressures on a smaller domain. Some care needs to be taken with the size and frequency
content of the boundary conditions to avoid standard spectral issues such as Gibbs effects. A
companion functionsetTopVelocity2D provides a useful example boundary condition to
approximate ridge-spreading with anerf smoothed spreading rate profile (see Figure 1).
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Figure 1: Example output fromsetTopVelocity2D to set upper horizontal velocity boundary
condition appropriate for mid-ocean ridge spreading centers. All of these problems are scaled to the
Extraction LengthL =

√
ηU0/∆ρg [Spiegelman and McKenzie, 1987], which for this and the next

figure we have taken to be 10km. The periodic domain extends from−24L ≤ x ≤ 24L and is dis-
cretized into 1024 panels of sizedx. The velocity assumes anerf smoothed step function atx = 0
(U(x, 0) = erf(x/λ)) andtanh tapers at either end to enforce periodicity and remove spurious pres-
sure oscillations due to Gibbs effects. Hereλ = 0.1.

4 3-D Benchmark

Extending the solution to 3-D for a Ridge-Transform-Ridge benchmark (e.g. Phipps Morgan
and Forsyth [1988]) is straightforward and follows directly from the 2-D solution. Starting with
Eqs. (4)–(7) we similarly reduce the problem to a 4th-order constant coefficient ODE in the
vertical forW̃ (k, z) and then use the boundary conditions at the surface to set the coefficients.
Combining Eqs. (4)–(6) to eliminatẽU andW̃ yields

(D2 − k2)2W̃ = 0 (20)

which is identical to Eq.11 but nowk = ||k|| =
√

k2
x + k2

y which is always positive1. Apply-
ing boundary conditions thatW vanishes atz = 0 andz → ∞ again yields Eq. 13 for the
general solution for̃W . To fix the value ofc2 however, requires both Eqs. (4) and (7) and the
Fourier transform of the surface horizontal velocity fieldsŨ0 = Ũ0i+ Ṽ0j whereŨ0 = Ũ(k, 0).
Substituting Eq. (13) into (4) gives

ikxŨ + ikyṼ = −c2(1− kz)e−kz (21)

and integrating Eq. (7) to remove(D2 − k2) (and assuming all velocities vanish asz → ∞
gives

− ikyŨ + ikxṼ = c3e
−kz (22)

wherec3 is an arbitrary constant of integration. Equations (21) and (22) can be written as

kQŨ = E(z)c (23)

where

Q =
i

k

[
kx ky

−ky kx

]
(24)

1note for the 2-D solutionk = [kx 0]T and||k|| = |kx| = |k|.

4



U: [max min] = 1, −1

−6 −4 −2 0 2 4

0

2

4

6

−0.5 0 0.5

W: [max min] = 0, −0.631839

−6 −4 −2 0 2 4

0

2

4

6

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1

P
x
: [max min] = 176.047, −176.047

−6 −4 −2 0 2 4

0

2

4

6

−0.5 0 0.5

P
z
: [max min] = 255.143, −71.1838

−6 −4 −2 0 2 4

0

2

4

6

−0.5 0 0.5

Figure 2:Example output fromspecRidge2D (produced by the scriptseeRidge2D ) for the bound-
ary condition given in Figure 1. The solution is returned only over the smaller domainx ∈ [−6L, 6L]
z ∈ [0, 6L]. In the lower two figures, a pressure gradient> 1 denotes dynamic pressures greater
than gravity. Note the very large pressure gradients on small scales generated by∇2V (the mini-
mum/maximum values of each field are given above each panel). While the velocity fields are smooth,
the pressure fields require significant resolution. The challenge for lower-order discretizations such as
FEM, Finite-Difference or Finite-Volume is to accurately reproduce both velocity and pressures for this
problem.
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Figure 3: Closeup of dynamic pressure field for this calculation on the sub-domain−1 ≤ x ≤ 1,
0 ≤ z ≤ 1. The blocky nature is an artifact of the plotting procedure (and the blurring is due to some
weird pdf compression issue I can’t get rid of). As these are spectral solutions, the solution is actually
continuous inz and accurate up to the Nyquist frequency inx.

is a unitary matrix and

E(z) = e−kz

[
(1− kz) 0

0 1

]
c =

[
−c2

c3

]
(25)

Substituting in the horizontal velocity boundary conditions atz = 0 (and noting thatE(0) = I)
gives

c = kQŨ0 (26)

(i.e. c2 = −ikT Ũ0) and the full solution can be written as

Ũ(k, z) = QHEQŨ0 (27)

W̃ (k, z) = −ikT Ũ0ze
−kz (28)

P̃ = −i2e−kzkT Ũ0 (29)

with pressure gradient terms
P̃H = 2e−kzkkT Ũ0 (30)

P̃z = i2e−kzkkT Ũ0 (31)

where the subscriptH refers to the horizontal components. For completeness, it is useful to
write out Equation (27) explicitly as[

Ũ

Ṽ

]
=

e−kz

k2

[
kx −ky

ky kx

][
(1− kz) 0

0 1

][
kx ky

−ky kx

][
Ũ0

Ṽ0

]
(32)
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4.1 Special Case Ridge-Transform-Ridge solution

Equations (27)–(31) form a general solution for the flow of a viscous half-space driven by
arbitrary horizontal flow at the surface and no flow asz → ∞.2 For the specific case of flow
near a mid-ocean ridge driven by two-rigid plates, we can orient the ridge such that the surface
plate motion is always ridge perpendicular (i.e. parallel to the transforms). I.e.U(x, y) =
U(x, y)i and thereforeV (x, y) = Ṽ0 = 0.

Under these conditions the solutions for the velocity, pressure and pressure gradients in the
Fourier domain become

Ũ = Ũ0

(
1− k2

x

k
z

)
e−kz (33)

Ṽ = −Ũ0
kxky

k
ze−kz (34)

W̃ = −ikxŨ0ze
−kz (35)

P̃ = −2ikxŨ0e
−kz (36)

With Pressure gradient terms

P̃x = 2k2
xŨ0e

−kz (37)

P̃y = 2kxkyŨ0e
−kz (38)

P̃z = i2kkxŨ0e
−kz (39)

Which should be identical to the 2-D equations (15)–(17) forky = 0, k = |kx|.

4.2 Implementation

Figure 4 shows upper boundary conditions and pressure-velocity solutions for one solution
of the 3-D equations for a simplified Ridge-Transform-Ridge calculation. These figures were
produced by the example scriptseeRidge3D which callssetTopVelocity3D to set the
upper velocity Boundary condition andspecRidge3D to calculate the full spectral solution.
Lifting a trick from Phipps Morgan and Forsyth [1988], the 3D solution uses superposition to
solve for a uniform 2-D solution first alaspecRidge2D , then adds in the flow due to non-2D
spreading inherent in the upper Boundary conditions. Full details are buried in the codes.
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Figure 4: (a) Ridge-Transform-Ridge velocity upper Boundary conditions for the 3-D calcula-
tions. This solution is assumed periodic iny with period24L and embedded in a large scale
2-D x-Periodic solution that spansx ∈ [−24L, 24L] as in Figure 1. (b,c) 2 views of Pres-
sure and velocity streamlines for example 3-D problem with upper boundary condition given
in Fig. 4a but only shown on the 3-D domainx ∈ [−6L, 6L], y ∈ [0, 12L], z ∈ [0, 6L] with
128 × 128 × 64 points. Slices are colored by the Pressure field (figure produced by script
seeRidge3D )
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