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1 Model and flow geometry
I assume here corner flow under a perfectly horizontal plates (Fig. 1). The mantle
is supposed incompressible, of uniform density ρ and obeys a powerlaw relation
between stress and strain.

The model geometry suggests using a cylindrical reference frame, with coor-
dinates r and θ, with θ defined as the angle from the vertical (Figure 1). Hence,
the boundary conditions to verify are

{
vr = V0

vθ = 0
θ = ±π/2 (1)

with V0 the half-spreading rate.
The incompressibility condition is verified by the introduction of the stream

function ψ such that

vr =
1

r

∂ψ

∂θ
(2)

vθ = −∂ψ

∂r
(3)
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Figure 1: Configuration of the MOR model

As the boundary conditions do not depend on r, let us suppose that ψ depends
on θ only. The solution is a similarity solution. It may also be recognized that ψ
should be antisymmetric

ψ (−θ) = −ψ (θ) (4)

The flow solution can be expressed as functions of ψ

ψ = rψ
vr = ψ′

vθ = −ψ
ε̇rr = ∂vr/∂r = 0
ε̇θθ = 1

r
(vr + ∂vθ/∂θ) = 0

ε̇rθ = g/2r

(5)

where I define
g = ψ′′ + ψ (6)

For a powerlaw material, I define the effective viscosity as

η = Bε̇
1−n

n
II , (7)
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where ε̇II is a strain rate invariant, which, for this geometry, is written simply as

ε̇II =

[(
ε̇xx − ε̇zz

2

)2

+ ε̇xz

]1/2

= |ε̇rθ| = |g|
2r

(8)

Then, the deviatoric stresses become

σrr = ηε̇rr = 0
σθθ = ηε̇θθ = 0

σrθ = ηε̇rθ = B (2r)−1/n g1/n

(9)

2 Stress equilibrium
The total pressure P can be decomposed into a lithostatic pressure PL = ρgr cos θ
and a non-lithostatic pressure

p = P − ρgr cos θ (10)

Using separation of variables, I define

p = R (r)×Θ (θ) (11)

Inserting this decomposition into the stress equilibrium equations, resolved in
the r and θ direction, results in

R′ Θ = 1
r

∂σrθ

∂θ
= 1

n
B (2r)−

1−n
n g′g

1−n
n

R Θ′ = 1
r

∂σrθ

∂r
+ 2σrθ =

(
2− 1

n

)
B (2r)−

1
n g

1
n

(12)

I use the first equation to define the r and θ dependence of the pressure field

R = B (2r)−1/n (13)

Θ = −g′g
1−n

n = −nf ′ (14)

where f is defined as
f = g1/n (15)

The second stress equilibrium equation further implies

f ′′ + l2 f = 0, l2 =
2n− 1

n2
(16)
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The flow underneath a mid-ocean ridge with a powerlaw rheology is therefore
obtained by solving two ODEs, Eq. 16 and the following:

ψ′′ + ψ = fn (17)

For a Newtonian fluid, n = 1, which implies l = 1. Then, these equation can
be combined too form the classical biharmonic equation [Batchelor, 1967]

∇4ψ = 0 (18)

3 Flow solution
The general solution of Eq. 16 is

f = f1 sin lθ + f2 cos lθ (19)

Symmetry conditions at Mid-Ocean Ridges imply that f2 = 0. The coefficient
f1 will be determined by matching the plate velocity with that of the solution.

For the time being, let’s scale Eq. 17 by fn
1 . We obtain

T ′′ + T = (sin lθ)n , with ψ = fn
1 T (20)

As the tangential velocity vθ = fn
1 T is null at the surface θ = π/2 and at the

symmetry axis θ = 0, the boundary conditions on Eq. 20 are simply
{

T ′ = f−n
1 V0 ≡ 1/D, θ = π/2

T = 0, θ = π/2
(21)

Finding the value for D is part of the solution.
For the case n = 1, the solution corresponds to the well-known corner flow

theory [Batchelor, 1967; McKenzie, 1969]

T = −1

2
θ cos θ (22)

D = 4/π (23)

For other values of n, a numerical solution is required. Tovish et al., [1978] give
a series expansion of the solution for integer values of n.

I wrote a series of Matlab routines that solve Eq. 20 with the boundary con-
ditions of Eq. 21 using a Finite Difference approach and a multigrid solver. This
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was developed as part of the class 12:521 Computational Geodynamics Model-
ing that I have been teaching with Jian Lin in the MIT/WHOI Joint Program in
Oceanography.

Figure 2 displays the functions ψ and ψ′ for various values of n as well as
the value of the D coefficient and the angle at which radial velocity changes sign
(angle of corner) as functions of n.

Figure 3 compares the flow field for n = 1, n = 3, and n = 10, with or
without lithostatic pressure.

The main program is NN_corner. This script requests two input: the power
law exponent n, and a buoyancy number β. The later is defined as

β =
ρ̄gh

nlB (DV0/2h)1/n
(24)

It represent the relative strength of viscous vs. buoyancy forces. β = 0 ignores
gravity. The total pressure is given by

P = nlB (DV0/2h)1/n
[
βr cos θ − (2r/h)−1/n f ′

]
(25)
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Figure 2: Numerical solution for (A) ψ(θ), (B) dψ/dθ for n =1, 3, 5, and 10, (C)
the coefficient D and (D) the angle at which the radial velocity is 0 as functions of
the stress exponent n. In (A) and (B), the circles indicate the angle where ψ′ = 0
(the corner of the corner flow). As n increases, the corner is shallower. In C, the
line at D = 4/π indicates the analytical solution for n = 1.
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Figure 3: Visualization of flow field solution. Left column: B = 0 (no lithostatic
pressure); Right column: B = 1; Top row: n = 1 (Newtonian); Middle row:
n = 3; bottom row: n = 10. In each panel, the solution is mirrored underneath a
ridge axis. Red arrows represent the velocity field. On the right-hand side, colors
indicate the viscosity and contours represent mantle trajectories (contours of ψ).
On the left-hand side, colors indicate the overpressure (P < 0 only, meaning
suction; log-scale) and contours indicate the strain rate (contours of log10 ε̇II from
-4 to 2, every 1/4 log-units). The more non-linear the rheology, the shallower
the corner and the lesser the suction term, because the upwelling region becomes
almost rigid.
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