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1 Model and flow geometry

I assume here corner flow under a perfectly horizontal plates (Fig. 1). The mantle
is supposed incompressible, of uniform density p and obeys a powerlaw relation
between stress and strain.

The model geometry suggests using a cylindrical reference frame, with coor-
dinates r and ¢, with # defined as the angle from the vertical (Figure 1). Hence,
the boundary conditions to verify are

Uy = VE) _
{ v = 0 0=+m/2 (1)
with 1 the half-spreading rate.

The incompressibility condition is verified by the introduction of the stream
function ¢ such that
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Figure 1: Configuration of the MOR model

As the boundary conditions do not depend on r, let us suppose that ¢» depends
on # only. The solution is a similarity solution. It may also be recognized that 1)

should be antisymmetric

P (=0) = =y (0)
The flow solution can be expressed as functions of 1)
Yo=Y
Ur = ’QD/
vg = =Y
€ = Ov./Or
599 = % (UT + 81)9/89
g = g/2r

where I define

For a powerlaw material, I define the effective viscosity as

g=1" +1
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where €7 is a strain rate invariant, which, for this geometry, is written simply as

. - L 9]
€n = [(2> +8m] = |érol = o (8)
Then, the deviatoric stresses become
O = Nepr = 0
ggg = MNegg = 0 9)

Org — néré = B(QT)il/ngl/n

2 Stress equilibrium

The total pressure P can be decomposed into a lithostatic pressure Py, = pgr cos 6
and a non-lithostatic pressure

p= P — pgrcost (10)
Using separation of variables, I define
p=R(r)x6(0) (1)

Inserting this decomposition into the stress equilibrium equations, resolved in
the r and 0 direction, results in

o _1-n 1-n
RO = e = 2B T g "
RO = 1%2495, = (2-L)B(2r) "gr

I use the first equation to define the r and € dependence of the pressure field

R = B(@r)V" (13)
O = —gg= =-nf (14)
where f is defined as
f=g'" (15)
The second stress equilibrium equation further implies
2n —1
=0, =" (16)
n



The flow underneath a mid-ocean ridge with a powerlaw rheology is therefore
obtained by solving two ODEs, Eq. 16 and the following:

P+ =f" 7)

For a Newtonian fluid, n = 1, which implies [ = 1. Then, these equation can
be combined too form the classical biharmonic equation [Batchelor, 1967]

Vi =0 (18)

3 Flow solution
The general solution of Eq. 16 is
f = fisinlf + fycoslf (19)

Symmetry conditions at Mid-Ocean Ridges imply that f, = 0. The coefficient
f1 will be determined by matching the plate velocity with that of the solution.
For the time being, let’s scale Eq. 17 by f{'. We obtain

T"+T = (sinlf)", with ¢ = f'T (20)

As the tangential velocity vy = fJ* T is null at the surface # = 7/2 and at the
symmetry axis ¢ = 0, the boundary conditions on Eq. 20 are simply

{ T =f"Vo=1/D, 6=m7/2 o)

T=0, 0=m/2

Finding the value for D is part of the solution.
For the case n = 1, the solution corresponds to the well-known corner flow
theory [Batchelor, 1967; McKenzie, 1969]

1
T = —59 cos 0 (22)
D = 4/x (23)
For other values of n, a numerical solution is required. Tovish et al., [1978] give
a series expansion of the solution for integer values of n.

I wrote a series of Matlab routines that solve Eq. 20 with the boundary con-
ditions of Eq. 21 using a Finite Difference approach and a multigrid solver. This
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was developed as part of the class 12:521 Computational Geodynamics Model-
ing that I have been teaching with Jian Lin in the MIT/WHOI Joint Program in
Oceanography.

Figure 2 displays the functions ¢ and v’ for various values of n as well as
the value of the D coefficient and the angle at which radial velocity changes sign
(angle of corner) as functions of n.

Figure 3 compares the flow field forn = 1, n = 3, and n = 10, with or
without lithostatic pressure.

The main program is NN_corner. This script requests two input: the power
law exponent n, and a buoyancy number (3. The later is defined as

_ pgh
nlB (DVy/2h)"™

(24)

It represent the relative strength of viscous vs. buoyancy forces. § = 0 ignores
gravity. The total pressure is given by

P =nlB (DVy/2h)"" |Breos0 — (2r/h) """ f'] (25)
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Figure 2: Numerical solution for (A) ¢(#), (B) dv/df for n =1, 3, 5, and 10, (C)
the coefficient D and (D) the angle at which the radial velocity is 0 as functions of
the stress exponent n. In (A) and (B), the circles indicate the angle where ¢’ = 0
(the corner of the corner flow). As n increases, the corner is shallower. In C, the
line at D = 4/ indicates the analytical solution for n = 1.
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Figure 3: Visualization of flow field solution. Left column: B = 0 (no lithostatic
pressure); Right column: B = 1; Top row: n = 1 (Newtonian); Middle row:
n = 3; bottom row: n = 10. In each panel, the solution is mirrored underneath a
ridge axis. Red arrows represent the velocity field. On the right-hand side, colors
indicate the viscosity and contours represent mantle trajectories (contours of 1)).
On the left-hand side, colors indicate the overpressure (P < 0 only, meaning
suction; log-scale) and contours indicate the strain rate (contours of log,, €11 from
-4 to 2, every 1/4 log-units). The more non-linear the rheology, the shallower
the corner and the lesser the suction term, because the upwelling region becomes
almost rigid.



