2D non-Newtonian corner flow model of Mid-Ocean Ridges

Laurent G.J. Montési*
Woods Hole Oceanographic Institution
Department of Marine Geology and Geophysics

May 1, 2007

1 Model and flow geometry

I assume here corner flow under a perfectly horizontal plates (Fig. 1). The mantle is supposed incompressible, of uniform density ρ and obeys a powerlaw relation between stress and strain.

The model geometry suggests using a cylindrical reference frame, with coordinates r and θ, with θ defined as the angle from the vertical (Figure 1). Hence, the boundary conditions to verify are

$$
\left\{\begin{array}{l}
v_{r}=V_{0} \tag{1}\\
v_{\theta}=0
\end{array} \quad \theta= \pm \pi / 2\right.
$$

with V_{0} the half-spreading rate.
The incompressibility condition is verified by the introduction of the stream function ψ such that

$$
\begin{align*}
v_{r} & =\frac{1}{r} \frac{\partial \psi}{\partial \theta} \tag{2}\\
v_{\theta} & =-\frac{\partial \psi}{\partial r} \tag{3}
\end{align*}
$$

[^0]

Figure 1: Configuration of the MOR model

As the boundary conditions do not depend on r, let us suppose that ψ depends on θ only. The solution is a similarity solution. It may also be recognized that ψ should be antisymmetric

$$
\begin{equation*}
\psi(-\theta)=-\psi(\theta) \tag{4}
\end{equation*}
$$

The flow solution can be expressed as functions of ψ

$$
\begin{align*}
\psi & =r \psi \\
v_{r} & =\psi^{\prime} \\
v_{\theta} & =-\psi \\
\dot{\varepsilon}_{r r} & =\partial v_{r} / \partial r \tag{5}\\
\dot{\varepsilon}_{\theta \theta} & =\frac{1}{r}\left(v_{r}+\partial v_{\theta} / \partial \theta\right)=0 \\
\dot{\varepsilon}_{r \theta} & =g / 2 r
\end{align*}
$$

where I define

$$
\begin{equation*}
g=\psi^{\prime \prime}+\psi \tag{6}
\end{equation*}
$$

For a powerlaw material, I define the effective viscosity as

$$
\begin{equation*}
\eta=B \dot{\varepsilon}_{\mathrm{II}}^{\frac{1-n}{n}} \tag{7}
\end{equation*}
$$

where $\dot{\varepsilon}_{I I}$ is a strain rate invariant, which, for this geometry, is written simply as

$$
\begin{equation*}
\dot{\varepsilon}_{\mathrm{II}}=\left[\left(\frac{\dot{\varepsilon}_{x x}-\dot{\varepsilon}_{z z}}{2}\right)^{2}+\dot{\varepsilon}_{x z}\right]^{1 / 2}=\left|\dot{\varepsilon}_{r \theta}\right|=\frac{|g|}{2 r} \tag{8}
\end{equation*}
$$

Then, the deviatoric stresses become

$$
\begin{align*}
\sigma_{r r} & =\eta \dot{\varepsilon}_{r r}=0 \\
\sigma_{\theta \theta} & =\eta \dot{\varepsilon}_{\theta \theta}=0 \tag{9}\\
\sigma_{r \theta} & =\eta \dot{\varepsilon}_{r \theta}=B(2 r)^{-1 / n} g^{1 / n}
\end{align*}
$$

2 Stress equilibrium

The total pressure P can be decomposed into a lithostatic pressure $P_{L}=\rho g r \cos \theta$ and a non-lithostatic pressure

$$
\begin{equation*}
p=P-\rho g r \cos \theta \tag{10}
\end{equation*}
$$

Using separation of variables, I define

$$
\begin{equation*}
p=R(r) \times \Theta(\theta) \tag{11}
\end{equation*}
$$

Inserting this decomposition into the stress equilibrium equations, resolved in the r and θ direction, results in

$$
\begin{align*}
& R^{\prime} \Theta=\frac{1}{r} \frac{\partial \sigma_{r \theta}}{\partial \theta} \\
& R \Theta^{\prime}=\frac{1}{r} \frac{1 \sigma_{r \theta}}{\partial r}+2 \sigma_{r \theta}=(2 r)^{-\frac{1-n}{n}} g^{\prime} g^{\frac{1-n}{n}} \tag{12}\\
& \left.R^{\prime}-\frac{1}{n}\right) B(2 r)^{-\frac{1}{n}} g^{\frac{1}{n}}
\end{align*}
$$

I use the first equation to define the r and θ dependence of the pressure field

$$
\begin{align*}
& R=B(2 r)^{-1 / n} \tag{13}\\
& \Theta=-g^{\prime} g^{\frac{1-n}{n}}=-n f^{\prime} \tag{14}
\end{align*}
$$

where f is defined as

$$
\begin{equation*}
f=g^{1 / n} \tag{15}
\end{equation*}
$$

The second stress equilibrium equation further implies

$$
\begin{equation*}
f^{\prime \prime}+l^{2} f=0, \quad l^{2}=\frac{2 n-1}{n^{2}} \tag{16}
\end{equation*}
$$

The flow underneath a mid-ocean ridge with a powerlaw rheology is therefore obtained by solving two ODEs, Eq. 16 and the following:

$$
\begin{equation*}
\psi^{\prime \prime}+\psi=f^{n} \tag{17}
\end{equation*}
$$

For a Newtonian fluid, $n=1$, which implies $l=1$. Then, these equation can be combined too form the classical biharmonic equation [Batchelor, 1967]

$$
\begin{equation*}
\nabla^{4} \psi=0 \tag{18}
\end{equation*}
$$

3 Flow solution

The general solution of Eq. 16 is

$$
\begin{equation*}
f=f_{1} \sin l \theta+f_{2} \cos l \theta \tag{19}
\end{equation*}
$$

Symmetry conditions at Mid-Ocean Ridges imply that $f_{2}=0$. The coefficient f_{1} will be determined by matching the plate velocity with that of the solution.

For the time being, let's scale Eq. 17 by f_{1}^{n}. We obtain

$$
\begin{equation*}
T^{\prime \prime}+T=(\sin l \theta)^{n}, \quad \text { with } \psi=f_{1}^{n} T \tag{20}
\end{equation*}
$$

As the tangential velocity $v_{\theta}=f_{1}^{n} T$ is null at the surface $\theta=\pi / 2$ and at the symmetry axis $\theta=0$, the boundary conditions on Eq. 20 are simply

$$
\begin{cases}T^{\prime}=f_{1}^{-n} V_{0} \equiv 1 / D, & \theta=\pi / 2 \tag{21}\\ T=0, & \theta=\pi / 2\end{cases}
$$

Finding the value for D is part of the solution.
For the case $n=1$, the solution corresponds to the well-known corner flow theory [Batchelor, 1967; McKenzie, 1969]

$$
\begin{align*}
T & =-\frac{1}{2} \theta \cos \theta \tag{22}\\
D & =4 / \pi \tag{23}
\end{align*}
$$

For other values of n, a numerical solution is required. Tovish et al., [1978] give a series expansion of the solution for integer values of n.

I wrote a series of Matlab routines that solve Eq. 20 with the boundary conditions of Eq. 21 using a Finite Difference approach and a multigrid solver. This
was developed as part of the class 12:521 Computational Geodynamics Modeling that I have been teaching with Jian Lin in the MIT/WHOI Joint Program in Oceanography.

Figure 2 displays the functions ψ and ψ^{\prime} for various values of n as well as the value of the D coefficient and the angle at which radial velocity changes sign (angle of corner) as functions of n.

Figure 3 compares the flow field for $n=1, n=3$, and $n=10$, with or without lithostatic pressure.

The main program is NN_corner. This script requests two input: the power law exponent n, and a buoyancy number β. The later is defined as

$$
\begin{equation*}
\beta=\frac{\bar{\rho} g h}{n l B\left(D V_{0} / 2 h\right)^{1 / n}} \tag{24}
\end{equation*}
$$

It represent the relative strength of viscous vs. buoyancy forces. $\beta=0$ ignores gravity. The total pressure is given by

$$
\begin{equation*}
P=n l B\left(D V_{0} / 2 h\right)^{1 / n}\left[\beta r \cos \theta-(2 r / h)^{-1 / n} f^{\prime}\right] \tag{25}
\end{equation*}
$$

4 References

Batchelor, G. K., 1967/2000 An introduction to fluid dynamics, Cambridge University Press

McKenzie, D.P., 1969, Speculations on the consequences and causes of plate motions, Geophysical Journal of the Royal Astronomical Society 18, 1-32

Tovish, A., G. Schubert, and D. P. Luyendyk, 1978, Mantle flow pressure and the angle of subduction: non-Newtonian corner flows, Journal of Geophysical Research 83, 1238-1241

Figure 2: Numerical solution for (A) $\psi(\theta)$, (B) $d \psi / d \theta$ for $n=1,3,5$, and 10 , (C) the coefficient D and (D) the angle at which the radial velocity is 0 as functions of the stress exponent n. In (A) and (B), the circles indicate the angle where $\psi^{\prime}=0$ (the corner of the corner flow). As n increases, the corner is shallower. In C, the line at $D=4 / \pi$ indicates the analytical solution for $n=1$.

Figure 3: Visualization of flow field solution. Left column: $B=0$ (no lithostatic pressure); Right column: $B=1$; Top row: $n=1$ (Newtonian); Middle row: $n=3$; bottom row: $n=10$. In each panel, the solution is mirrored underneath a ridge axis. Red arrows represent the velocity field. On the right-hand side, colors indicate the viscosity and contours represent mantle trajectories (contours of ψ). On the left-hand side, colors indicate the overpressure ($P<0$ only, meaning suction; log-scale) and contours indicate the strain rate (contours of $\log _{10} \dot{\varepsilon}_{\text {II }}$ from -4 to 2 , every $1 / 4$ log-units). The more non-linear the rheology, the shallower the corner and the lesser the suction term, because the upwelling region becomes almost rigid.

[^0]: *montesi@whoi.edu

