Crustal Deformation Modeling

Overview of workflow for typical research problem

Legend

- CIG
- Free
- Open Source
- Commercial
- Available
- Planned

- Gocad
- LaGriT
- PyLith
- ParaView
- Earth Vision
- CUBIT
- GeoFEST
- Mayavi2
- TetGen
- Abaqus
- Visit
- NetGen
- Matlab
- OpenDX
- Iris Explorer
- Fledermaus

Computational Infrastructure for Geodynamics
Ingredients for Running PyLith

- Simulation parameters

- Finite-element mesh
 - Mesh exported from LaGriT
 - Mesh exported from CUBIT
 - Mesh constructed by hand (PyLith mesh ASCII format)

- Spatial databases for physical properties, boundary conditions, and rupture parameters
 - SCEC CVM-H or USGS Bay Area Velocity model
 - Simple ASCII files
Spatial Databases

User-specified field/value in space

- **Examples**
 - Uniform value for Dirichlet (0-D)
 - Piecewise linear variation in tractions for Neumann BC (1-D)
 - SCEC CVM-H seismic velocity model (3-D)

- Generally independent of discretization for problem

- **Available spatial databases**
 - **UniformDB** Optimized for uniform value
 - **SimpleDB** Simple ASCII files (0-D, 1-D, 2-D, or 3-D)
 - **SCECCVMH** SCEC CVM-H seismic velocity model v5.3
 - **ZeroDispDB** Special case of UniformDB
Features in PyLith 1.5

Enhancements and new features in blue

- Time integration schemes and elasticity formulations
 - Implicit for quasi-static problems (neglect inertial terms)
 - Infinitesimal strains
 - Small strains
 - Explicit for dynamic problems
 - Infinitesimal strains with sparse system Jacobian
 - Infinitesimal strains with lumped system Jacobian
 - Small strains with sparse system Jacobian

- Bulk constitutive models
 - Elastic model (1-D, 2-D, and 3-D)
 - Linear and Generalized Maxwell viscoelastic models (3-D)
 - Power-law viscoelastic model (3-D)
 - Linear Maxwell viscoelastic model (2-D)
 - Drucker-Prager elastoplastic model (3-D)
Features in PyLith 1.5 (cont.)

Enhancements and new features in blue

- Boundary and interface conditions
 - Time-dependent Dirichlet boundary conditions
 - Time-dependent Neumann (traction) boundary conditions
 - Absorbing boundary conditions
 - Kinematic (prescribed slip) fault interfaces w/multiple ruptures
 - Dynamic (friction) fault interfaces
 - Time-dependent point forces
 - Gravitational body forces

- Fault constitutive models
 - Static friction
 - Linear slip-weakening
 - Dieterich-Ruina rate and state friction w/ageing law
Features in PyLith 1.5 (cont.)

Enhancements and new features in blue

- Automatic and user-controlled time stepping
- Ability to specify initial stress state
- Importing meshes
 - LaGriT: GMV/Pset
 - CUBIT: Exodus II
 - ASCII: PyLith mesh ASCII format (intended for toy problems only)
- Output: VTK files
 - Solution over volume
 - Solution over surface boundary
 - State variables (e.g., stress and strain) for each material
 - Fault information (e.g., slip and tractions)
- Automatic conversion of units for all parameters
PyLith 1.5: Under-the-hood Improvements

- Additional cleanup of C++ code
- Optimization of several modules
 - Mesh distribution among processors
 - Integration of elasticity terms
- Ability to use algebraic multigrid preconditioners
Time-Dependent Boundary Conditions

Dirichlet, Neumann, and Point Forces

\[f(\vec{x}) = \]

\[f_0(\vec{x}) + \quad \text{db}_\text{initial} \]
\[\dot{f}_1(\vec{x})(t - t_1(\vec{x})) + \quad \text{db}_\text{rate} \]
\[f_2(\vec{x})a(t - t_2(\vec{x})) \quad \text{db}_\text{change} \]

db_initial Initial value (constant in time)

db_rate Constant rate of change (spatially variable start time)

db_change Time history (spatially variable amplitude and start time)
PyLith as a Hierarchy of Components

Components are the basic building blocks
PyLith as a Hierarchy of Components

PyLith Application and Time-Dependent Problem

PyLithApp

- **properties**
 - none

- **facilities**
 - mesh_generator

- problem

- petsc

TimeDependent

- **properties**
 - dimension

- **facilities**
 - normalizer

 - materials

 - bc

 - interfaces

 - gravity_field

 - formulation
PyLith as a Hierarchy of Components

Fault with kinematic (prescribed slip) earthquake rupture

FaultCohesiveKin

- properties
 - id
 - name
 - up_dir
 - normal_dir
- facilities
 - quadrature
 - eq_srcs
 - output

EqKinSrc

- properties
 - origin_time
- facilities
 - slip_function
PyLith Application Flow

PyLithApp

main()
 mesher.create()
 problem.initialize()
 problem.run()

TimeDependent (Problem)

initialize()
 formulation.initialize()

run()
 while (t < totalTime)
 dt = formulation.getTimeStep()
 formulation.prestep()
 formulation.step()
 formulation.poststep()

Implicit (Formulation)

initialize()

prestep()
 set constraints

step()
 calculate residual
 solve for displacement increment

poststep()
 update displacement field
 write output
Ingredients for Running PyLith

- Simulation parameters
 - .cfg ASCII files
 - pylithapp.cfg always read if it exists
 - Command line arguments

- Finite-element mesh
 - Mesh exported from LaGriT
 - Mesh exported from CUBIT
 - Mesh constructed by hand (PyLith mesh ASCII format)

- Spatial databases for physical properties, boundary conditions, and rupture parameters
Example: 3d/hex8 step01.cfg

Compression and shear via prescribed displacements
Example: 3d/hex8 step01.cfg
Example: 3d/hex8 step01.cfg

Input

- Simulation parameters
 - pylithapp.cfg
 - step01.cfg

- CUBIT Mesh:
 - mesh_hex8_1000m.mesh

- Spatial databases
 - mat_elastic.spatialdb
 - axialdisp.spatialdb

Output

- Displacement field
 - step01_t000000.vtk
 - step01-groundsurf_t000000.vtk

- State variables
 - Upper crust (elastic)
 - step01-statevars_info.vtk
 - physical properties
 - step01-statevars_t000000.vtk
 - stress and strain
 - Lower crust (elastic)
 - step01-statevars_info.vtk
 - physical properties
 - step01-statevars_t000000.vtk
 - stress and strain
Example: 3d/hex8 step06.cfg

Creep and repeated rupture on a strike-slip fault
Example: 3d/hex8 step06.cfg

Creep and repeated rupture on a strike-slip fault
Example: 3d/hex8 savageprescott.cfg

Input

- Simulation parameters
 - pylithapp.cfg
 - step06.cfg
- Mesh: mesh_hex8_1000m.exo
- Spatial databases
 - mat_elastic.spatialdb
 - mat_maxwell.spatialdb
 - finalsrip_rupture.spatialdb
 - sliptime.spatialdb
 - sliprate_creep.spatialdb

Output

- Displacement field
 - step06_tNNNN.vtk
 - step06-groundsurf_tNNNN.vtk
- State variables
 - Upper crust (elastic)
 - step06-upper_crust_info.vtk
 - step06-upper_crust_tNNNN.vtk
 - Lower crust (viscoelastic)
 - step06-lower_crust_info.vtk
 - step06-lower_crust_tNNNN.vtk
- Fault
 - step06-fault_info.vtk
 - step06-fault_tNNNN.vtk
Useful Tips/Tricks

- `pylithinfo [--verbose] [PyLith args]`
 Dumps all parameters with their current values to text file

- **Command line arguments**
 - `--help`
 - `--help-components`
 - `--help-properties`
 - `--petsc.start_in_debugger` (run in xterm)
 - `--nodes=N` (to run on N processors on local machine)

- **PyLith User Manual**

- **CIG Short-Term Tectonics mailing list**
 cig-short@geodynamics.org

- **CIG bug tracking system**
 http://www.geodynamics.org/roundup