Software, complexity & reuse...

Robust-to-experimental codes for geodynamics

CIG-II Planning workshop 200903

Steve Quenette
VPAC / Monash, Australia
Victorian drivers

Real world drivers – real science problems
What is it you (the US geodynamics community), wants?
Do we really want to write a new code and re-implement all our assets when a new method comes about?
Separation of concerns... Granularity at the features likely to change

- **Software / Software engineering concerns**
- **Computational / domain concerns**
 - 2D, 3D, free surfaces, AMR, ...
- **Numerical concerns**
 - Multigrid, block solvers, ...
- **Physics concerns**
 - Mohr Columb, MoresiMulhaus, ...
To provide communities with sustainable software infrastructure that can readily adopt new methods & knowledge and be applied to many related problems

This is what StGermain is
For communities, the approach is...

- **Retreats**
 - Get people together, focus on a problem
 - CIG have been good at this
 - “Documentation” is not enough

- **Break out of the mould** – *implement software in the modularity that changes!*
 - The numerical schemes, physics, etc
 - Imagine if you could “trade features”... community created infrastructure

- **Hide parallelism, stitching, etc**
The Underworld platform

- History rich rheologies
- 3D, Parallel, stokes

- Our view: a **platform**
 - Built on StGermain
 - Framework, and a
 - Code

- Long term geodynamics
 - Plate to basin scale

- Rapid adoption of numerical research

- Not traditionally for “end users”
Holden Commodore SS
Australian designed
"Underworld"

Pontiac G8
US branding
"GALE"

• The collaboration: (from the approach...)
 – Take *Underworld* at 2006 (early version)
 – Add **surface processes**, **packaging** & support to the US Community
• It has diverged from the approach
 – Effectively a “fork” (but can be re-merged)
 – We’ve stopped developing features together

• Making it easy to install has been an eye opener!

• Engagement – its not clear to me what the GALE community would see as ideal?
 – How can we help?
MaDDs

- **Driver:** take McKenzie scale magma dynamics into a 3D ridge scale setting
 - **GALE** – community infrastructure driven
 - **MaDDs** – computational challenge “demonstrator”
 - Magma working group, in particular Spiegelman

- Numerically very complicated & difficult

- **Approach:** piecewise capability increment upon Underworld
• Benchmark driven
 – clear deliverables
 – Reused as “unit” test for the science features

• Visits from Marc and Laurent

• Is it all going to come down to preconditioning?
 – What’s the best environment for developing them?
Going forward

• Readily describe bigger and more complicated problems...
 – Continue the Lego pieces of scientific concerns
 • StGermain
 – Describe new problems without C
 • PDE template library
 – Better stitching & less “scariness”
 • StGermain interface has changed since its inceptions
 • Especially wrt HPC directions

• Better provide to the spectrum of users across all the problems
Wrap up

• What do you want?
 – Hopefully I’ve given you a f/w for thinking about it independent of our own technology
 – Sounds like we need a StGermain tutorial/workshop

• CIG2 is poised to provide the software infrastructure

• More scale, more physics, changing HPC landscape
 – Need to manage this! Expensive for CIG or expensive for user-developers?