Seismic anisotropy: enough already?

Thorsten W. Becker
University of Southern California, Los Angeles

CIG Mantle Convection Workshop
Boulder, June 21 2005
Nope.

CIG? ... gotta love it thanks to the people who contribute software and geoframework.org
Goal of this talk

- provide a brief review of seismic anisotropy as a constraint for mantle convection and lithospheric deformation
- discuss some of the previous modeling efforts on global and regional scales
- present work in progress on evaluating the remaining problems
Message

- *applied geodynamics* useful for understanding plate tectonics (AGUPT)
- need to widen the realm of quantitative model predictions to reduce ambiguities (QUMRA)
- seismic anisotropy can yield a useful measure of flow and tectonic deformation (SAMFT)
- improved grip on many modeling issues, but imperfect data remains a big limitation (IHMBID)
Collaborators

- Donna Blackman (UCSD)
- Jules Browaeys (USC)
- Sebastien Chevrot (CNRS)
- Boris Kaus (USC)
- Jamie Kellogg (UCLA)
- Rick O'Connell (Harvard U)
- Vera Schulte-Pelkum (CU Boulder)
USC HPCC

- 1716 nodes, 1.4TB
- 7th fastest academic supercomputer as of 2004
- I haven't been able to properly edit files for six months now
- Hunters and farmers
Roadmap

- data
- anisotropy (azimuthal, 2ϕ) modeling
- mantle flow modeling
- combining the two
 - previous work
 - regional tectonics
 - global statistics
 - global specifics
Applied geodynamics

- construct “realistic” (i.e. best-guess) models of mantle flow to make predictions for our Earth
- buoyancy forces \sim viscous flow
- stress $= \text{viscosity} \times \text{strain-rate}$
- examples of constraints:
 - velocities: plate motions, past and present
 - strain-rates: GPS, earthquakes, uplift
 - stress: WSM, geoid
 - integral of strain-rates: anisotropy, geochemistry
Data and models
Constraints on mantle structure from seismic waves

\[\delta t > 0 \]
\[\delta t' > 0 \]
\[\delta t' < 0 \]

Isotropic anomalies

Seismology

Anisotropic anomalies

Temperature, composition

Geodynamics

Strain-rates
Isotropic tomography: upper mantle

vox3p05, $z = 290$ km

mndm04p, $z = 254$ km

ngrand, $z = 288$ km

s20rts, $z = 300$ km
Azimuthal anisotropy: Rayleigh wave phase velocity maps

100 s 150 s
Shear wave splitting

after Crampin (1981), from garnero.edu
SKS splitting data coverage

\[\delta t_{SKS} = 1.5 \text{ s} \]

data compilation from Matt Fouch's ASU database
Regional anisotropy: splitting at trenches

- water?
- arc-parallel flow?
At what depths do we detect seismic anisotropy?

dislocation creep (high σ, low T) needed for LPO (what about climb?)
Laboratory studies:
LPO in the multi-anvil

- subcrustal anisotropy likely caused by lattice preferred orientation (LPO) of intrinsically anisotropic olivine crystals in flow
- for olivine, the seismically fast, slow, and intermediate axes are $a [100]$, $b [010]$, $c [001]$, respectively
- a and b align with the largest and smallest axes of the finite strain ellipsoid (FSE) for small strains
- for large strains, a rotates into the shear plane by dynamic recrystallization (subgrain rotation and grain boundary migration)
Pole figures

uniaxial compression experiment by Nicolas et al. (1974)
High τ and high H_2O regime

- type A: normal anisotropy, $a [100]$ in shear plane
- type B: High τ and high H_2O regime, $a [100]$ normal to shear plane (Jung & Karato, 2001)
Plate-tectonic anisotropy

• in a simple world, both ridges and trenches should show a in plate motion direction
• ridges: ridge-parallel fast a
 • due to melt/crack alignment (Kendall et al., 1994)
 • due to melt segregation (Holtzman et al., 2003)
 • small scale, so far not observed
• subduction zones: arc-parallel alignment of a
 • arc-parallel flow (e.g. Hall et al., 2000; Mehl et al., 2003)
 • presence of water (Mitsukami et al., 2004)
Quantitative links between LPO and flow: theories

- Kinematic constraint theory of Ribe (1991): grains rotate to minimize the mismatch between local and global strain rate
 - Predicts alignment of \(a, b, c\) with FSE
 - Critical \(\xi = \log (e_1/e_2) \sim 0.5\) overprints texture

- VPSC theory of Wenk & Tome (1999)
 - Computationally intensive
 - Six free parameters

- Kinematic theory of Kaminski & Ribe (2001, 2002); DREX (Kaminski et al., 2004) (freely available...)
Kinematic recrystallization

- Kaminski & Ribe (2001, 2002) method includes stress dependent recrystallization
 - volume fraction of grains controlled by dislocation density, ρ
 - non-recrystallized fraction of grain = $\exp (-\lambda \rho^2)$
 - large (small) strain energy grains shrink (grow) by grain boundary migration
- two free parameters from lab:
 - strain-free subgrain nucleation λ
 - grain boundary mobility M
KR and the lab: a axes

Zhang & Karato lab

KR method

simple shear

uniaxial compression

Kaminski & Ribe (2001); Kaminski et al. (2004)
Saturation of LPO anisotropy under simple shear: olivine

- \(C \) tensor norms
- anisotropy
- \(d\ln \nu \sim \frac{1}{2} d\ln C \)

![Graph showing saturation of LPO anisotropy](image)
Saturation of LPO anisotropy: GBS, olivine and enstatite

- C tensor norms anisotropy
- $d\ln v \sim \frac{1}{2} d\ln C$
LPO: an integral measure!

- red: fast a
- blue: velocities
- red \neq blue!
- need mantle flow as $f(t)$

Kaminski & Ribe (2001)
\(\xi = 2 \) texture for simple, sub-Pacific streamlines

- Regular slip system
- Water slip system

Directions: [100], [010], [001]
Trench LPO

- simple flow model
- LPO not so simple
Advection rules for global models

- here: assume steady-state flow (backward convection was used in Becker et al., 2003)
- follow tracers backward until $\xi = \log (e_1 / e_2) \sim 0.5$ (OK for FSE) or $\xi \sim 2$ (OK for LPO)
- erase texture if tracers rise from below 410km, maximum advection time ~ 43 Ma
- compute full elastic tensor (21 components) at each depth layer
From LPO to wiggles, how?
Surface wave anisotropy: Rayleigh wave phase velocities

\[D^2 \phi = \frac{B_{C,S}(C_{ij})a(z)}{A} + \frac{H_{C,S}(C_{ij})f(z)}{F} + \frac{G_{C,S}(C_{ij})l(z)}{L} \]
Body wave anisotropy: SKS splitting, for example

- can compare largest FSE axes with best-fit transverse anisotropy (TI) axes for the hexagonal component of stiffness tensor
- any tilt will lead to back-azimuth dependence of fast splitting axes, so will non-hexagonal tensors

Schulte-Pelkum & Blackman (2003)
From flow to SKS splitting

- compute elastic tensors from LPO fabrics using the Kaminski et al. (2004) method for olivine/enstatite mix using \textit{DREX} (with fixed enstatite handling)
- compute elastic tensors (using dP and dT derivatives, both P and T are here $f(z)$ only)
- compute synthetic seismograms using reflectivity method
- measure splits by cross-correlation
Back-azimuth variations
Global flow models
What's going on?

- solve conservation of mass, momentum, (& energy)
- infinite Prandtl number, incompressible fluid
- constitutive relationships: \(\tau = 2 \eta \dot{\varepsilon} \)

 1) \(\eta = f(z) \)

 2) \(\eta = f(z) \exp(E(T_0 - T')) \)

 3) \(\eta = A f(z) \exp(E(T_0 - T'))^{n} \dot{\varepsilon}^{n}_{II} \)

 (only for upper 410 km, should use mixed rheol.)
Numerical tools

- finite elements:
 - Citcom (Moresi, Tan, Conrad, Gurnis, ...)
 - CitcomS (Zhong, Moresi, ...)
 - all old versions from geoframework.org, slightly modified
- Hager & O'Connell (1981) semi-analytical, spectral method is used for comparison
Some details on code

“development”

- Citcom and CitcomS modifications:
 (thanks to Allen, Eh, and Jeroen)
 - surface velocities and T from GMT grd files
 - regional model side-velocities from recoded, modular spectral method (not quite done...)
 - multi-grid and CG solver issues
 - power-law implemented with new, damped iteration scheme, clipped viscosities (10^4 range)
 - VTK output conversion
 - tested double/single precision
Resolution and accuracy

- global CitcomS:
 - 12 CPU x 64 x 64 x 64 (~ 3,100,000) elements, ~50km resolution
 - this is probably not enough, but fast
- can easily improve resolution for instantaneous computations, long simulations problematic
- some benchmarking done, more to do
- power-law rheology work in progress
Choices and input models

- present-day plate velocities prescribed on top
- seismic tomography for density structure
- need viscosity profile, and $R = \frac{d\ln T}{d\ln \nu}$
- typically: $smean$ or $ngrand$, constant R
Present-day surface velocities in no-net-rotation reference frame
Viscosity profiles
Input structure at 290 km
(ngrand tomography)
Viscosity at 290 km for $\eta = f(r, T)$
Viscosity at 290 km for $\eta = f(r, T, \sigma)$, power-law oceanic asthenosphere
Effect of rheology: Newtonian, $\eta = f(r)$
Effect of rheology:

Newtonian, $\eta = f(r, T)$
Effect of rheology:

power-law, $\eta = f(r, T, \sigma)$
Nested circulation models
Previous work on nested flow models: some examples

- Tan, Gurnis, *et al.* on plumes: coupled Citcom and CitcomS
- Mihalffy, Marquart, & Schmeling on plumes: side flow boundary conditions from Hager & O'Connell code
- *PYREZed* CitcomS
Nested models, $\eta = f(r, T)$, only density driven

using large scale, S wave tomography
Nested models, $\eta = f(r, T)$, density and top plate flow
Nested models, $\eta = f(r, T)$, density and large scale flow
Puttin' it all together
SKS splitting in trenches

- 2.5D flow, FSE, and seismic synthetics: Hall et al. (2000)
- poster by Lassak et al. (here)
- work by Liverpool group

Hall et al. (2000)
California splitting

GPS and rigid plate flow: Silver & Holt (2002)

African splitting

mantle flow, instantaneous strain-rates

Behn et al. (2004)
Pacific surface wave anisotropy

mantle flow,
instantaneous strain-rates

Gaboret et al. (2003)
Phase velocity maps explored

$T = 50\text{ s Rayleigh waves, FSE, smean tomography model}$ Becker et al. (2003)
Phase velocity maps explored

- FSE better than APM
- active upwellings better than slabs
- NR degrades fit
- changes in plate motions improve fit
- LPO ~same as FSE

Becker et al. (2003)
Some loose ends

- LPO means dislocation (power-law) creep, yet all models use diffusion (Newtonian) creep
- FSE is not the whole story, should use LPO
- lateral viscosity variations important (cratons, asthenosphere, $\eta(T)$,...)
- time-dependence of mantle flow
Surface wave anisotropy revisited: radial $\eta(z)$, low strain, FSE

Rayleigh wave
at 100 s (~150 km depth)

$\langle \Delta \alpha \rangle_{\text{ocean}} = 37.7^\circ$

(best models in Becker et al., 2003, have $\langle \Delta \alpha \rangle_{\text{ocean}} \sim 24^\circ$)

ngrand tomography, plate motions, Ekstrom (2001) tomography
Surface wave anisotropy revisited: power-law $\eta(z, T, \sigma)$, low strain, FSE ngrand tomography, plate motions, Ekstrom (2001) tomography

Rayleigh wave at 100 s (~150 km depth)

$\langle \Delta \alpha \rangle_{\text{ocean}} = 41.9^\circ$
Surface wave anisotropy revisited: radial $\eta(z)$, low strain, KR LPO

Rayleigh wave at 100 s (~150 km depth)

$$\langle \Delta \alpha \rangle_{\text{ocean}} = 38.7^\circ$$

ngrand tomography, plate motions, Ekstrom (2001) tomography
Surface wave anisotropy revisited: radial $\eta(z)$, high strain, KR LPO

Rayleigh wave at 100 s (~150 km depth)

$\langle \Delta \alpha \rangle_{\text{ocean}} = 37.8^\circ$

ngrand tomography, plate motions, Ekstrom (2001) tomography
Radial $\eta(z)$, high strain, KR LPO, different anisotropic model

Rayleigh wave at 100 s (~150 km depth)

$\langle \Delta \alpha \rangle_{\text{ocean}} = 31.9^\circ$

ngrand tomography, plate motions, Trampert & Woodhouse (2003)
Surface wave findings

- effect of LPO vs. FSE moderate, but LPO allows for amplitude predictions
- lateral viscosity variations less important than radial structure
- strong effect of input density (bad & good)
- surface wave models have global coverage, but patterns are of uneven robustness
Westcoast: different ξ

low strain

high strain

\[\delta t_{SKS} = 1.5 \text{ s} \]

$\frac{\text{r}_\text{ID} \text{ s} \text{mean}_\text{n}_\text{t} \xi_C}{\text{r}_\text{ID} \text{ s} \text{mean}_\text{n}_\text{t} \text{ ol}_\text{only} \xi_C} = 0.5 $
Westcoast: density models

slabs only

tomography

$\delta t_{SKS} = 1.5 \text{ s}$
$\eta_D^{\text{stein}} \xi_C = 0.5$

$\eta_F^{\text{smean nt}} \xi_C = 0.5$
Regional anisotropy

conclusions

• can explain observed variety in splitting
• can use variation in fast axes and delay time to constrain depth dependence of anisotropy
• can explain amplitudes of splitting (kindof)
• there's a hint of a crustal deformation signal (to be explored with better models)
• slab models (with induced return flow) lead to better model fits
Open questions for seismic anisotropy modeling

- What are the length scales of heterogeneity, and how are they imaged?
- What is the best theoretical description of LPO formation?
- How important is the crust for shear wave splitting (S and SKS)?
- How do we constrain H_2O, so that we can comprehensively model alternative slip systems?
need to evaluate the robustness of mantle flow estimates with respect to rheology
further exploration of convection, and tectonophysics, reconstructions is crucial
a lot of progress will come from joint (seismology and geodynamics) models
data quality (coverage) is a problem and...
Some suggestions for CIG

(mostly harmless)

- keep it simple (in the beginning)
 - modularize and document existing codes, at a low level, without framework commitment
 - create a repository of cleaned-up subroutines
 - facilitate utilization of CS developments
 - assist in I/O handling and interpolation

- long term goals
 - coupled lithospheric/mantle codes
 - nested models