AuScope & Lagrangian-Eulerian consistent AMR

Steve Quenette
Louis Moresi,
Luke Hodkinson & Dave May

CIG - AMR Workshop October 2007
• About us & motivations

• Lagrangian - Eulerian consistent AMR
• Provide the capability of:
 “Structure and Evolution of the Australian Continent”

• With respect to us:
 - Software as infrastructure
 - Fabricating numerical and geophysics research
Examples of supporting research

Existing: Underworld
- **Aspect:** geophysics
 - Isolated toolbox of rheologies and workflow revolving about Stokes flow
 - Long-term geodynamics - large deformation
- **Target models:**
 - Mantle, slab, basin, plumes, lithospheric, ...
- **Targeted numerics:**
 - FEM
 - Material point history (PIC)
 - Multigrid

Bleeding-edge: Mayhem

Dave May - dave.mayhem23@gmail.com
- **Aspect:** numerics
 - Research into AMR techniques optimised for Stokes and FEM with material point methods (Lagrangian-Eulerian consistent AMR)
- **Origin:** isolated research code
 - Serial
 - Not applied to involved geophysical problem
- **Objective:**
 - Consolidate into framework
 - Plugin into existing phenomena models
Development model

• We’re interested in an environment where:
 - Numerical schemes & physics can change with minimal impact on existing phenomena models
 • Hardware proofing (bandwidth, memory models)
 • Enabling multiphysics
 • Enabling scaling

• Our solution:
 - StGermain
 • Aspect oriented
 • “Composition” of phenomena models by isolated numerics and physics
 • Enables layered frameworks & expectation alignment
The language

- **Spans C & XML**

- **Abstraction of concepts at all levels**
 - **CP**: MoresiMulhous
 - **CM**: Field
 - **CS**: Component
 - ...

- **Interchangability**

```xml
<struct name="components" mergeType="merge">

  <struct name="mantleShape">
    <param name="Type">Box</param>
    <param name="startX">minX</param>
    <param name="startY">0.0</param>
    <param name="startZ">minZ</param>
  </struct>

  <struct name="mantleShape2">
    <param name="Type">Union</param>
    <list name="shapes">
      <param>mantleShape</param>
      <param>weakZoneShape</param>
    </list>
  </struct>

</struct>
```
The bain: distributed mem parallel

- **Domain & Discretisation**
 - **Meshing**
 - Structured - 1 to 3d decomposition
 - Unstructured - less mature
 - Incidence graph technique
 - Render out to flat arrays (Fortran like FEM)
 - **Particles**
 - Complicated to optimise
 - **FEM**
 - Abstract out fields (bundles)
 - (have had versions with optimal numbering)

- **Summary**
 - Expensive to develop.
 - Years of use.
 - Its all book keeping!
Existing: GALE
- GALE solves the Stokes and heat transport equations with a large selection of viscous and plastic rheologies.
 - **Target models:** orogenesis, rifting, and subduction, ...
 - **Targeted numerics:** Underworld (FEM,PIC) + free surface + ...

Bleeding-edge: MADDs
- Explore how magma dynamics interacts with mantle convection and/or long-term tectonics
 - **Target models:** mor, ...
 - **Targeted numerics:** Present thinking... Mixed FEM(PIC)-FV, >= quadratic
Ok, ok, but what about AMR?
Some geophysical context

- Either at the scale of:
 - Rifting & subduction
 - Graven

- Embedded within a greater lithospheric & mantle context

- Material point vs mesh density at a given point
1. Distributed memory parallel meshing infrastructure
 - Mixed tree & flat array based system

2. AMR aware FEM book-keeping
 - Refinement models

3. AMR aware PIC
 - Global Voronoi

4. AMR aware Multigrid, levelsets, ...
• ** Implemented the distributed memory parallel meshing infrastructure**

• **C example...**

```c
int newCells[4];
AdjTopology* topo;
AdjSet* coords;

topo = AdjTopology_New();
newCells[0] = AdjTopology_MakeQuad( topo );
AdjTopology_RefineQuad( topo, newCells[0], newCells );
AdjTopology_RefineQuad( topo, newCells[0], newCells );
```

• **From an API that looks like...**

```c
int MakeVertex( void* self );
void KillVertex( void* self, int id );
int Lift( void* self, int dim, int nSubCells, int* subCells );
void Unlift( void* self, int dim, int id );
int Join( void* self, int dim, int leftID, int rightID );

void RefineHexa( void* self, int cell, int *newCells );
void RefineQuad( void* self, int cell, int *newCells );
void RefineEdge( void* self, int cell, int *newCells );

void Update( void* self );
```
Desired outcome...

- basin, mantle, slabs, litho, ...
- orogenesis, rifting, subduction, ...
- magma melting, becoming litho, ...

Models:
- Underworld
- GALE
- MADDS

Tools:
- Underworld Toolbox
- StGermain - PICellerator

AMR