Rapid CAD and tetrahedral mesh generation for dynamic rupture problems

Christian Pelties,
Cameron Smith,
Gudmundur Heimisson,
Stefan Wenk,
Alice Gabriel
SeisSol - Project overview

Coordination, Host, Physics, Numerics, Algorithm, Pre- and Postprocessing, Application, User support

Technical development, HPC, Optimization, Visualization, Design

Consulting, Scaling, BlueGene/Q adaption

Visualization, parallel I/O

Automated CAD generation

...and others ...
Support, Guidance, Experience sharing, Consulting, ...
Goal

Complete seismic wave propagation package including solutions for

- dynamic rupture simulations
- exploration industry
- Seismology

with complex geometry and heterogeneous medium.

Requirements for solver

What do we need for this?

- Accurate numerical methods for reliable results (num. errors, boundary-, initial conditions)
- Proper geometry representation (topography, material interfaces)
- Use of acoustic, elastic, viscoelastic, and anisotropic material to approximate realistic geological subsurface properties
- Scalability on HPC architecture to tackle big problems with high frequency
Advantages of the ADER-DG Method

- Enables use of unstructured meshes – low velocity basins, curved or kinked faults, branching, surface rupture, fault interaction
- Mesh coarsening – adjustment of resolution
- High-order accurate simulation of the wave propagation including heterogeneous media and topography
Advantages of the ADER-DG Method

- ADER high-order time integration with local time stepping
- High-accurate results of the rupture process: Oscillation free dynamic rupture

SEM vs ADER-DG
Mathematical Model

Elastic Wave Equation as a Linear Hyperbolic System:

Vector-matrix notation:
\[
\frac{\partial Q_p}{\partial t} + A_{pq} \frac{\partial Q_q}{\partial x} + B_{pq} \frac{\partial Q_q}{\partial y} + C_{pq} \frac{\partial Q_q}{\partial z} = S_p
\]

Velocity-stress formulation:
3D: \[
Q = (\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \sigma_{yz}, \sigma_{xz}, u, v, w)^T
\]
Mathematical Model

Elastic Wave Equation as a Linear Hyperbolic System:

Vector-matrix notation:
\[
\frac{\partial Q_p}{\partial t} + A_{pq} \frac{\partial Q_q}{\partial x} + B_{pq} \frac{\partial Q_q}{\partial y} + C_{pq} \frac{\partial Q_q}{\partial z} = S_p
\]

Velocity-stress formulation:
3D: \[Q = (\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \sigma_{yz}, \sigma_{xz}, u, v, w)^T \]

Numerical Approximation of the solution

\[
\left(Q_h^{(m)} \right)_p (\xi, \eta, \zeta, t) = \hat{Q}^{(m)}_{pl}(t) \Phi_I(\xi, \eta, \zeta)
\]

- Φ_I are orthogonal basis functions
- the mass matrix is diagonal
Discontinuous Galerkin Approach – Flux computation

Flux computation

Exact Riemann solver is used to compute the state at the interfaces by upwinding:

\[
F_p^h = \frac{1}{2} T_{pq} \left(\begin{array}{c} A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \\ A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \end{array} \right) (T_{rs})^{-1} \hat{Q}_{sl}^{(m)} \Phi_l^{(m)} + \frac{1}{2} T_{pq} \left(\begin{array}{c} A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \\ A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \end{array} \right) (T_{rs})^{-1} \hat{Q}_{sl}^{(m)} \Phi_l^{(m)}
\]

Computation of the line integrals:

- Pre-computed analytically
- Gauss-Legendre integration

Opens up new possibilities:
- non-conforming meshes, dynamic rupture source type

Locality of the computations:
- only directly neighboring elements are required to exchange data, which leads to small communication times for parallel calculations
Suitability for large scale HPC infrastructure

Efficiency on the BlueGene/P machine Shaheen at KAUST

- 7.7 Mio. Elements
- Order of accuracy in space and time: O5
- Pure MPI parallelization – code is openMP hybrid now
- Metis partitioning

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
Dynamic Earthquake rupture

Incorporate source process

- To understand earthquake faulting
- Support physics-based ground motion prediction

Treat dynamic rupture as an interior time-dependent 'boundary condition' using the flux term!

- Impose new traction following the failure criterion
- Impose fault parallel velocities in opposite directions

Example: 1994 Northridge by A. Gabriel

Ingredients

- **Initial Shear Traction** τ_0

- **Geologic Structure** (Fault Geometry & Material Properties)

- **Failure Criterion**

- **Computer Program that Simulates Earthquakes as Spontaneous Ruptures**

- **Ground Shaking (Seismograms), Fault Slip, etc.**

(Brietzke et al. (2009))

Maps of the Southern California fault structure. Dots are earthquake centers. (Shaw et al. for SCEC, 2003)

(friction: non linear relation between fault stress and slip)

(Harris et al. (2009))
Failure criterion:

Coulomb friction model

\[|\sigma_{xy}| \leq \mu_f \sigma \]

traction fault strength

\[(|\sigma_{xy}| - \mu_f \sigma) \Delta v = 0\]

\(\sigma_{xy}\) traction
\(\mu_f\) friction coefficient
\(\sigma\) normal stress
\(\Delta v\) slip rate
Failure criterion:

Coulomb friction model

$$|\sigma_{xy}| \leq \mu_f \sigma$$

traction fault strength

$$(|\sigma_{xy}| - \mu_f \sigma) \Delta v = 0$$

σ_{xy} traction

μ_f friction coefficient

σ normal stress

Δv slip rate

Δd slip

D_c critical slip distance

Linear Slip Weakening friction law
(laboratory experiments – rate-and-state also implemented)

Provides:

- initial rupture
- arrest of sliding
- reactivation of slip
Verification – TPV3 SCEC Test Case

(Harris et al., 2004)

- spontaneous rupture propagation on a straight fault
- homogeneous fullspace
- linear slip weakening friction

Comparison between
ADER-DG method order 4 and 200m triangles at the fault (larger tetrahedrons in bulk)
and
DFM - Finite Difference staggered-grid split node order 2 with 50m grid interval
and
MDSBI - Multidimensional spectral boundary integral with 50m grid interval
DFM data provided by Luis Dalguer. MDSBI data computed with the code of E. Dunham (version 3.9.10).
DFM data provided by Luis Dalguer. MDSBI data computed with the code of E. Dunham (version 3.9.10).

Verification – TPV3 SCEC Test Case
Verification – TPV3 SCEC Test Case
Workflow

From CAD to seismogram...

- Get geometry and model data
- Assemble CAD model
- Create mesh
- Partitioning
- Set model parameters
- Solve physical equation
- Analysis of output

“Time to solution!”
Automated CAD generation

Current bottleneck: CAD generation can easily consume *weeks to month*

Difficulties:

- Surface reconstruction of different types of initial raw data
- Undulating 3D surfaces that merge under shallow angles, intersect
- Remove non-physical features
- Clip too small features depending on the desired mesh size
- Representation by splines as typically used by (commercial) CAD/mesh software unfortunate for geological data
- Watertight model
- Seamless integration into meshing software (avoid format conversion)
Automated CAD generation – preliminary workflow

1. Download topography/bathymetry, e.g. from NOAA's ETOPO data collection
2. Define bounding box: rectangular or spherical
3. Material interfaces: structured grids of points
4. Faults: structured grids of points, gOcad's TS format
5. Check projection
6. (Triangulated) surface generation: Poisson surface reconstruction (MeshLab)
7. Assemble model: apply union, intersection, trimming operations with Simmetrix discrete modeling tools
Customized problem definition and mesh generation interface for SeisSol by RPI/SCOREC/Simmetrix (C. Smith, M. Shephard)

- Accepts e.g. Parasolid, ACIS and STL input
- Trims automatically geometry and creates a watertight model
- Meshes with millions of elements in seconds/minutes
- Mesh coarsening/refining
- Handling complex geometries (no violation)
- User-friendly interface
- Quality metrics
- Exports SeisSol format
- Non-manifold geometry required

Two faces. At the intersection there are two edges overlapping. = assembly

Two faces. At the intersection there is one shared edge. = non-manifold
Gambit vs SimModeler
THex approach

Work by Surendra Nadh Somala and Jean-Paul Ampuero
Compare final slip and slip rate from homogeneous dynamic rupture simulation on planar dipping fault with rate-and-state friction (Olsen et al., 1998)

Example – The Mw 6.7 1994 Northridge earthquake

Work by A. Gabriel
Conclusion & Outlook

- ADER-DG solver ready, functional and benchmarked
- Bring all features into production version (under construction)
- Combine dynamic rupture with local time stepping

- Current bottleneck CAD generation (under construction)
- Use CAD for quality control

- Open Source (soon), already available through http://verce.eu/
 http://seissol.geophysik.uni-muenchen.de/
Failure criterion

Implementation of rate-and-state friction

- Updating scheme includes Newton-Raphson search for slip rate and two iterations for state variable (Kaneko et al., 2008)

\[
\mu_f = \mu_0 + a \ln \frac{v}{v_0} + b \ln \frac{v_0 \theta}{D_c}
\]

\[
\dot{\theta} = 1 - \frac{v \theta}{D_c}
\]

\(\theta\) state variable
\(a\) direct effect
\(b\) evolution effect
\(v_0\) steady-state reference velocity
\(\mu_0\) steady-state reference friction
Dipping fault geometry
(SCEC Test Cases TPV10 and TPV11)

- 60 degree dipping normal fault geometry
- Initial stress linearly depth dependent
- Subshear / supershear rupture conditions

Rupture time – contour plot (each 0.5 s)

Mesh geometry, computational domain and particle velocity on the fault plane after ~9.6 s

Off-fault station
(body 1.0 km, strike 0.0 km, depth 0.0 km)
Heterogeneous background stress
(SCEC Test Cases TPV16 and TPV17)

- Vertical strike-slip fault
- Randomly-generated heterogeneous initial stress conditions
- Trilinear interpolation to map background values on irregular distributed integration points

Rupture time – contour plot (each 0.5 s)

Initial shear stress on the fault plane

hansel (Michael Hansel – Finite Element – FaultSim)
pelties (Christian Pelties – Discontinuous Galerkin (GF wise))

On-fault station
(strike -9.0 km, dip 9.0 km)
Fault branching geometry
(2D SCEC Test Cases TPV14 and TPV15)

- Left-lateral, vertical, strike-slip fault with a rightward branch forming a 30 degree angle
- Slightly stress-heterogeneous
- High resolution required
Tohoku

- CAD generation difficult
- Extremely shallow angle at trench
- Skewed elements