Preconditioners for Variable Viscosity Stokes Flow

Dave May; dave.mayhem23@gmail.com
Louis Moresi; louis.moresi@gmail.com

School of Mathematical Sciences
Monash Cluster Computing

CIG - GeoMath
Santa Fe, NM
September 15, 2008
Outline

- Background
- Two solution strategies
- Preconditioners
- Some results
Motivating Examples

Convection in the mantle

Subduction

Lithospheric deformation

Lithospheric deformation

Lithosphere forms from hot rising magma

Lithosphere cools as it spreads

Cooled lithosphere sinks

Asthenosphere

CIG-GeoMath '08

Stokes Preconditioners
Continuum Description

- Incompressible Stokes flow with general constitutive tensor.

\[\begin{align*}
\text{Momentum:} & \quad \tau_{ij,j} - p_i + f_i = 0, \\
\text{Mass:} & \quad -u_{i,i} = 0,
\end{align*} \]

subject to

i) the boundary conditions

\[\begin{align*}
\mathbf{u}_i &= g_i, \quad \text{on } \Gamma_{g_i} \\
\sigma_{ij} n_j &= h_i, \quad \text{on } \Gamma_{h_i},
\end{align*} \]

ii) the pressure constraint

\[\int_\Omega p \, dV = p_s, \quad \text{for some constant } p_s \]

Constitutive

\[\tau_{ij} = \Lambda_{ijkl} \dot{\epsilon}_{kl}, \]

Strain rate

\[\dot{\epsilon}_{ij} = \frac{1}{2} (\mathbf{u}_{i,j} + \mathbf{u}_{j,i}), \]

We formulate the problem entirely in terms of velocity \(\mathbf{u} \), and pressure \(p \).
Discrete Stokes Flow Formulation

In the style of the Material Point Method...
“a fixed mesh with moving particles”

- Mixed Finite Element discretisation (Q1-P0)
 - Inherits robustness, versatility of FEM
 - Admits general constitutive relations

- Material properties tracked via particles - aka MPM
 - Compositional tracking
 - Stress- history tensor
 - Plastic strain history (scalar / tensorial)
 - Material orientation (anisotropy)

This is the approach adopted in Underworld
www.mcc.monash.edu.au
Discrete Stokes Flow Formulation

The connection between the FE formulation and the Lagrangian points is via evaluation of the weak form.

\[
K^E = \int_{\Omega_E} B^T(x) C(x) B(x) d\Omega
\]

\[
K^E = \sum_p w_p B_p^T(x_p) C_p(x_p) B_p(x_p)
\]

Lagrangian points coincide with the quadrature points used to evaluate the weak form:
- quadrature weights are defined locally over each element.
- weights are given by an approximate voronoi diagram.

The constitutive behaviour is associated with each particle “p” and is thus naturally incorporated into the quadrature.

The discrete form of the momentum and continuity generated by the FEM may be expressed as

\[
\begin{pmatrix}
K & G \\
G^T & 0
\end{pmatrix}
\begin{pmatrix}
u \\
p
\end{pmatrix}
=
\begin{pmatrix}
f \\
h
\end{pmatrix}
\]

\[K \in \mathbb{R}^{m \times m}\]
\[G \in \mathbb{R}^{m \times n}, \quad m > n\]

The MPM formulation provided the means to discretize the Stokes flow. But the issue of obtaining the flow field (u,p) is now a linear algebra problem...
Iterative methods for Discrete Stokes Flow

The ideal approach should be *optimal* in the sense that the convergence rate of method will be bounded independently of

- the discretisation parameters (*Example; grid resolution*)
- the constitutive parameters (*Example; smoothly varying vs. discontinuous viscosity*)
- the constitutive behaviour (*Example; isotropic vs. anisotropic*)
- the solution is obtained in $O(n)$ time... ie. multigrid

These are a challenging set of requirements!
Schur Complement Reduction

- Decouple u and p

- Solve the Schur complement system

 solve for p :

 $$(G^T K^{-1} G)p = G^T K^{-1} f - h,$$

 solve for u :

 $$Ku = f - Gp.$$

 where $S = G^T K^{-1} G$ is the Schur complement.

- Represent S as a matrix-free object. To compute $y = Sx$ we compute:

 $f^* = Gx,$

 solve for u^* :

 $$Ku^* = f^*,$$

 compute:

 $$y = G^T u^*.$$

- Outer Krylov iterations performed on $Sp=h'$, inner iterations performed on $Ky=x$.

- Need preconditioners for S and K.
Fully Coupled Approach

- Treat the Stokes problem as a single coupled system
 \[
 \begin{pmatrix}
 K & G \\
 G^T & 0
 \end{pmatrix}
 \begin{pmatrix}
 u \\
 p
 \end{pmatrix} =
 \begin{pmatrix}
 f \\
 h
 \end{pmatrix} \quad \rightarrow \quad A x = b,
 \quad A \in \mathbb{R}^{(m+n) \times (m+n)}
 \]

- Apply any suitable Krylov method to \(A x = b \)

- We require a preconditioner for \(A \).

- Block diagonal or block upper triangular
 \[
 \hat{A}_d = \begin{pmatrix}
 \hat{K} & 0 \\
 0 & -\hat{S}
 \end{pmatrix},
 \quad \hat{A}_u = \begin{pmatrix}
 \hat{K} & G \\
 0 & -\hat{S}
 \end{pmatrix}.
 \]

- Both options require preconditioners for \(K \) and \(S \).

- Elman, Silvester (1994)
- Rusten, Winther (1992)
- Silvester, Wathan (1994)
- Bramble, Pasciak (1988)
- Murphy, Golub (2000)
A Block Preconditioner for K

- Billinear form of the deviatoric stress tensor gradient

$$a(u, v) = \int_{\Omega} 2\eta \varepsilon_{ij}(u)\varepsilon_{ij}(v) \, dV$$

- Discrete operator

$$K = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$$

- A spectrally equivalent bilinear form is

$$\hat{a}(u, v) = \int_{\Omega} \eta (\nabla u_k) \cdot (\nabla v_k) \, dV$$

with discrete operator given by

$$\hat{K} = \begin{pmatrix} K_{11} & 0 \\ 0 & K_{22} \end{pmatrix}$$

[Axelsson, Padiy, “On a robust and scalable linear elasticity solver based on a saddle point formulation”]
A Block Preconditioner for K

- Block Gauss-Seidel

\[
\begin{align*}
Ax &= b \\
\left.\begin{array}{l}
x^{k+1} = (D + L)^{-1} (b - Ux^k) \\
A = D + L + U
\end{array}\right\}
\end{align*}
\]

- Discrete counterpart of the stress gradient is given by

\[
\begin{pmatrix}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{pmatrix}
\begin{pmatrix}
u \\
v
\end{pmatrix}
=
\begin{pmatrix}
f_x \\
f_y
\end{pmatrix}
\]

\[
D = \text{diag}[K_{11}, K_{22}]
\]

- Treat each velocity component as scalar, variable coefficient diffusion problem.

- Each scalar problem permits effective multigrid preconditioning.

\[
\begin{align*}
\text{Each } K_{ii}^{-1} \text{ given by CG, with } \frac{\|r_k\|}{\|r_0\|} < 10^{-2}, \text{ preconditioned via ML.}
\end{align*}
\]
A Block Preconditioner for K

- Two dimensional code using Q1-P0. Solve $K u = f$, $\Omega = [0, 1] \times [0, 1]$

- Sensitivity of iterations to grid and viscosity contrast

(i) $\eta = 10^6 \exp(\theta x)$

<table>
<thead>
<tr>
<th>elements</th>
<th>$\theta (\Delta \eta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \times N$</td>
<td>4.6×10^2</td>
</tr>
<tr>
<td>100^2</td>
<td>4</td>
</tr>
<tr>
<td>200^2</td>
<td>4</td>
</tr>
<tr>
<td>300^2</td>
<td>4</td>
</tr>
</tbody>
</table>

(ii) $\eta = \begin{cases} 1 & x < \frac{1}{2} \\ \Delta \eta & x \geq \frac{1}{2} \end{cases}$

<table>
<thead>
<tr>
<th>elements</th>
<th>$\Delta \eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \times N$</td>
<td>10^2</td>
</tr>
<tr>
<td>100^2</td>
<td>5</td>
</tr>
<tr>
<td>200^2</td>
<td>5</td>
</tr>
<tr>
<td>300^2</td>
<td>5</td>
</tr>
</tbody>
</table>
A Block Preconditioner for K

› **Timings**

\[\eta = 10^6 \exp(\theta x) \]
\[\theta = 13.8, \Delta \eta = 10^6 \]

<table>
<thead>
<tr>
<th>(M \times N)</th>
<th>unknowns</th>
<th>its.</th>
<th>CPU time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200^2</td>
<td>80,802</td>
<td>4</td>
<td>7.2</td>
</tr>
<tr>
<td>284^2</td>
<td>162,450</td>
<td>4</td>
<td>12.7</td>
</tr>
<tr>
<td>402^2</td>
<td>324,818</td>
<td>4</td>
<td>25.8</td>
</tr>
</tbody>
</table>

› In short, the block Gauss-Seidel preconditioner looks very promising.

› It is scalable, robust and exhibits \(\sim O(n) \) solution times when combined with ML.

› It’s effectiveness for 3D problems \((u,v,w)\) needs to be examined.

› Parallel efficiency needs to be explored. Others have demonstrated this with ML.
Preconditioner for S

For isoviscous Stokes, the commutator relation used is:

$$Z_c = (\eta \nabla^2) \nabla - \nabla (\eta \nabla^2) = 0$$

For variable viscosity the continuous operators will not commute. Instead we will utilize the analogous discrete commutator of Z_c

$$Z = KG - GK_p$$

$Z \in \mathbb{R}^{m \times n}$

Preconditioner for S

- To define the Schur complement, pre-multiply discrete commutator Z by $G^T K^{-1}$

$$G^T G - (G^T K^{-1} G) \quad K_p = G^T K^{-1} Z$$

- A little manipulation yields

$$L_p - SK_p = G^T K^{-1} Z, \quad L_p = G^T G$$

$$S = (L_p - G^T K^{-1} Z) \quad K_p^{-1}$$

- And finally we have

$$S^{-1} = K_p \quad (L_p - G^T K^{-1} Z)^{-1}$$
Preconditioner for S

- Define the operator K_p in a least squares manner assuming $Z \sim 0$.

\[
G K_p = KG
\]
\[
G^T G K_p = G^T K G
\]
\[
K_p^* = \left(G^T G\right)^{-1} G^T K G
\]
\[
S^{-1} \approx K_p^* L_p^{-1}
\]
\[
= L_p^{-1} G^T K G L_p^{-1}
\]
\[
= S_b^{-1}
\]

which is the BFBt preconditioner from; Elman, SIAM J. Sci. Comput., 17 (1996)

In practice, the assumption $Z \sim 0$ is usually not true. As a result the approximate Schur complement inverse will **not** be close to the true Schur complement.
Break Down of the Commutator Assumption

\[\Delta \eta = 10^4 \]
\[\Delta \eta = 10^6 \]
\[\Delta \eta = 10^8 \]

Convergence deteriorates as the viscosity contrast increase.
Scaled BFBt

- Some observations...
- Lets suppose
 \[K = I_m \]

As \(K \to I_m \), we have:

\[K_p^* \to I_n, \]
\[Z \to 0, \]
\[S_b^{-1} \to S^{-1}. \]

\(\begin{align*}
\text{a)} & \quad S = G^T K^{-1} G \\
& \quad = G^T G \\
\text{b)} & \quad K_p^* = L_p^{-1} G^T K G \\
& \quad = L_p^{-1} G^T G \\
& \quad = I_n \\
\text{c)} & \quad Z = K G - G K_p^* \\
& \quad = I_m G - G I_n \\
& \quad = 0 \\
\text{d)} & \quad S_b^{-1} = K_p^* L_p^{-1} \\
& \quad = I_n L_p^{-1} \\
& \quad = S^{-1}
\end{align*} \)
Scaled BFBt

- Previous observations motivate us to apply a scaling operation to (i) better condition the operator A, and (ii) to help drive the discrete commutator towards 0.

- We have chosen the following scaling to preserve symmetry:

$$XAX^T = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} K & G \\ G^T & 0 \end{pmatrix} \begin{pmatrix} X_1^T & 0 \\ 0 & X_2^T \end{pmatrix}$$

$$= \begin{pmatrix} \tilde{K} & \tilde{G} \\ \tilde{G}^T & 0 \end{pmatrix} = \bar{A}$$

where $$\tilde{K} = X_1KX_1^T,$$

$$\tilde{G} = X_1KX_2^T.$$

- We wish to build an X_1 such that we have: $$\tilde{K} \approx I_m$$

- For the sake of scaling rather than preconditioning we, prescribe X to be diagonal.

- The scaling we use is given by:

$$X_1 = \left[\text{diag}(K) \right]^{-1/2}$$
Scaled BFBt

- The scaled BFBt preconditioner is given by:

\[
S_{sb}^{-1} = \bar{L}_p^{-1} \bar{G}^T \bar{K} \bar{G} \bar{L}_p^{-1}
\]

- The scaled \(L_p\) operator is:

\[
\bar{L}_p = \bar{G}^T \bar{G} = X_2 \left[G^T X_1^T X_1 G \right] X_2^T
\]

The scaling changes the discrete Poisson operator to a discrete variable-coefficient diffusion operator. The coefficient is related to the inverse of the viscosity.

The original and scaled \(L_p\) system can both be efficiently handled with multigrid. Either geometric MG or algebraic are suitable. We use ML.
Prototype Problems

- We consider three isotropic models with different viscosity structures.
- Two dimensional code using Q1-P0 elements.

Exponentially varying with depth “Exp(y)”

Step function in x “Step(x)”

Step function in x & y “Viscous sinker”

Element resolutions = \{ \frac{1}{32}, \frac{1}{64}, \frac{1}{128}, \frac{1}{256} \}

Viscosity contrasts = \{ 10, 10^3, 10^6, 10^8 \}

Reference preconditioner for S

\[S_{\text{diag}}^{-1} = \text{diag}(G^T \text{diag}(K)^{-1} G)^{-1} \]
Results: “Exp(y)”

h - dependence

η - dependence

Viscosity contrast

Iterations

Elements, mx

10

1

1

50 100 150 200 250

1 $\times 10^1$ 1×10^2 1×10^3 1×10^4 1×10^5 1×10^6 1×10^7 1×10^8

Iterations
Results: “Step(x)”

\(h \) - dependence

\(\eta \) - dependence
Results: “Sinker”

h - dependence

η - dependence

Stokes Preconditioners
A Comparison

- Schur complement reduction versus fully coupled approach

<table>
<thead>
<tr>
<th>“Sinker”</th>
<th>Iterations</th>
<th>SCR(FG, \hat{S}_{sb}^{-1})</th>
<th>FC(FG, \hat{S}_{sb}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h = 1/32$</td>
<td></td>
<td>10 10³ 10⁶ 10⁸</td>
<td>10 10³ 10⁶ 10⁸</td>
</tr>
<tr>
<td>$h = 1/64$</td>
<td></td>
<td>8 9 9 9</td>
<td>12 13 13 14 +2</td>
</tr>
<tr>
<td>$h = 1/128$</td>
<td></td>
<td>10 10 9 9</td>
<td>14 15 13 13 0 0</td>
</tr>
<tr>
<td>$h = 1/256$</td>
<td></td>
<td>11 11 11 11</td>
<td>16 17 16 16 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 14 14 14</td>
<td>19 20 20 21 +2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+5 +5 +5 +5</td>
<td>+7 +7 +7 +7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Step(x)”</th>
<th>Iterations</th>
<th>SCR(FG, \hat{S}_{sb}^{-1})</th>
<th>FC(FG, \hat{S}_{sb}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h = 1/32$</td>
<td></td>
<td>10 10³ 10⁶ 10⁸</td>
<td>10 12 14 15 +5</td>
</tr>
<tr>
<td>$h = 1/64$</td>
<td></td>
<td>6 8 9 9</td>
<td>10 14 14 17 +6</td>
</tr>
<tr>
<td>$h = 1/128$</td>
<td></td>
<td>7 9 10 10</td>
<td>11 14 14 17 +6</td>
</tr>
<tr>
<td>$h = 1/256$</td>
<td></td>
<td>8 10 12 12</td>
<td>13 16 18 22 +9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 13 13 14</td>
<td>16 19 22 27 +11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+5 +5 +4 +5</td>
<td>+6 +7 +8 +13</td>
</tr>
</tbody>
</table>
Summary

1) Stokes flow is an common component of numerous types of geodynamic models.

Viscosity structures used in geodynamic models can provide challenging problems for iterative methods.

2) A block Gauss-Seidel iteration combined with algebraic multigrid was shown to be robust and scalable preconditioner for the (1,1) block associated with the discretized gradient of the stress tensor.

3) The scaled BFBt preconditioner was shown to be fairly robust and scalable preconditioner for the Schur complement.

4) All preconditioners examined permit the use of multigrid.

5) Using a fully coupled (FC) approach to solve Stokes generally requires more iterations than the Schur complement reduction (SCR). The rate of the increasing iterations required by FC w.r.t viscosity contrast and increased resolution grows faster than that observed with SCR. The extra iterations incurred by FC may be offset by using relaxed solves on the preconditioner for the (1,1) block.

We need to conduct more detailed studies to examine the effectiveness of these ideas in 3D and in a massively parallel environment. This work is presently underway within Underwold and CitcomS...
A note on software

- The following software packages were used to obtain the results presented...

 - PETSc: www.mcs.anl.gov/petsc
 - PetscExt: www.maths.monash.edu.au/~dmay/PetscExt
 - Underworld: www.mcc.monash.edu.au
 - ML (via PETSc): http://software.sandia.gov/Trilinos

Thanks for your attention