Adaptive Mesh Refinement in CLAWPACK and GeoClaw

Randall J. LeVeque
Department of Applied Mathematics
University of Washington

http://www.clawpack.org
• CLAWPACK (Conservation Laws Package) and GeoClaw

• Finite volume methods for hyperbolic equations
 • Riemann problems and Godunov’s method
 • Wave limiters and high-resolution methods

• Adaptive mesh refinement strategies

• Two applications
 • Tsunami modeling, shallow water equations
 • Seismic waves in heterogeneous earth

• Quadrilateral/hexahedral grids for the sphere
Some collaborators on these projects

Marsha Berger, NYU
David George, UW
Jan Olav Langseth, Norwegian Defence Research Est., Oslo
Donna Calhoun, Commissariat à l’Energie Atomique, Paris
Christiane Helzel, Bochum

Harry Yeh, Civil Engineering, OSU
Roger Denlinger, Dick Iverson, USGS CVO

Supported in part by NSF, DOE
Solves general nonlinear systems of hyperbolic conservation laws (fortran 77, Matlab)

Finite volume high-resolution Godunov methods (cell averages, solution of “Riemann problems”)

Shock-capturing methods developed in 1970’s, 80’s originally for compressible gas dynamics (aeronautics, detonations, astrophysics)

Wave propagation algorithm: general approach for arbitrary hyperbolic systems (also for problems not in conservation form)
CLAWPACK software — AMRCLAW

- Uses Berger-Oliger-Colella style mesh refinement
- Collaboration with Marsha Berger, based on her AMR code for gas dynamics
- “Rectangular grids” — \((i, j)\) grid indexing, e.g., lat-long
- Refinement on rectangular patches (in space and time)
- Refines automatically to follow wave and/or in specified regions
- Other AMR wrappers:
 - CHOMBO-CLAW (Colella et al, Calhoun), C++
 - BEARCLAW (Mitran), f90
 - AMROC (Deiterding), C++
High resolution finite volume methods

Hyperbolic conservation law:

\[1D : q_t + f(q)x = 0 \]
\[2D : q_t + f(q)x + g(q)y = 0 \]
\[1D : q_t + f'(q)q_x = 0 \]
\[2D : q_t + f'(q)q_x + g'(q)q_y = 0 \]

Variable coefficient linear hyperbolic system:

\[1D : q_t + A(x)q_x = 0 \]
\[2D : q_t + A(x, y)q_x + B(x, y)q_y = 0 \]

Def: Hyperbolic if eigenvalues of Jacobian \(f'(q) \) in 1D or \(\alpha f'(q) + \beta g'(q) \) in 2D are real and there exists a complete set of eigenvectors.

Eigenvalues are wave speeds, eigenvectors yield decomposition of data into waves.
Finite-difference Methods

- Pointwise values \(Q_i^n \approx q(x_i, t_n) \)
- Approximate derivatives by finite differences
- Assumes smoothness

Finite-volume Methods

- Approximate cell averages: \(Q_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x, t_n) \, dx \)
- Integral form of conservation law,

\[
\frac{\partial}{\partial t} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x, t) \, dx = f(q(x_{i-1/2}, t)) - f(q(x_{i+1/2}, t))
\]

leads to conservation law \(q_t + f_x = 0 \) but also directly to numerical method.
Godunov’s Method for \(q_t + f(q)_x = 0 \)

1. Solve Riemann problems at all interfaces, yielding waves \(\mathcal{W}^p_{i-1/2} \) and speeds \(s^p_{i-1/2} \), for \(p = 1, 2, \ldots, m \).

Riemann problem: Original equation with piecewise constant data.
Godunov’s Method for $q_t + f(q)_x = 0$

Then either:

1. Compute new cell averages by integrating over cell at t_{n+1},
Godunov’s Method for \(q_t + f(q)_x = 0 \)

Then either:

1. Compute new cell averages by integrating over cell at \(t_{n+1} \),

2. Compute fluxes at interfaces and flux-difference:

\[
Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} [F_{i+1/2}^n - F_{i-1/2}^n]
\]
Godunov’s Method for $q_t + f(q)_x = 0$

Then either:

1. Compute new cell averages by integrating over cell at t_{n+1},

2. Compute fluxes at interfaces and flux-difference:

 $$Q_{i+1}^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x}[F_{i+1/2}^n - F_{i-1/2}^n]$$

3. Update cell averages by contributions from all waves entering cell:

 $$Q_{i}^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x}[A^+ \Delta Q_{i-1/2} + A^- \Delta Q_{i+1/2}]$$

where $A^\pm \Delta Q_{i-1/2} = \sum_{i=1}^{m} (s_{i-1/2}^p)^\pm W_{i-1/2}^p$.
Wave-propagation form of high-resolution method

\[Q_{i}^{n+1} = Q_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\sum_{p=1}^{m} (s_{i-1/2}^{p})^{+} \mathcal{W}_{i-1/2}^{p} + \sum_{p=1}^{m} (s_{i+1/2}^{p})^{-} \mathcal{W}_{i+1/2}^{p} \right] \]

\[- \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2}) \]

Correction flux:

\[\tilde{F}_{i-1/2} = \frac{1}{2} \sum_{p=1}^{M_w} |s_{i-1/2}^{p}| \left(1 - \frac{\Delta t}{\Delta x} |s_{i-1/2}^{p}| \right) \mathcal{W}_{i-1/2}^{p} \]

where \(\mathcal{W}_{i-1/2}^{p} \) is a limited version of \(\mathcal{W}_{i-1/2}^{p} \) to avoid oscillations.

(Unlimited waves \(\mathcal{W}_{i-1/2}^{p} = \mathcal{W}_{i-1/2}^{p} \implies \text{Lax-Wendroff for a linear system} \implies \text{nonphysical oscillations near shocks.})
Limiter methods

Differencing $\mathcal{W}^p_{i+1/2} - \mathcal{W}^p_{i-1/2}$ approximates q_{xx}.

Gives second order terms in Taylor series (Lax-Wendroff)

This improves solution only if q is sufficiently smooth.
Limiter methods

Differencing $\mathcal{W}_i^{p+1/2} - \mathcal{W}_i^{p-1/2}$ approximates q_{xx}.
Gives second order terms in Taylor series (Lax-Wendroff)
This improves solution only if q is sufficiently smooth.

Limiters: Compare magnitude of $\mathcal{W}_i^{p+1/2}$ to corresponding wave from adjacent Riemann problem in upwind direction.
Apply limiter based on ratio of wave strengths.
Limiter methods

Differencing $W_{i+1/2}^p - W_{i-1/2}^p$ approximates q_{xx}. Gives second order terms in Taylor series (Lax-Wendroff). This improves solution only if q is sufficiently smooth.

Limiters: Compare magnitude of $W_{i-1/2}^p$ to corresponding wave from adjacent Riemann problem in upwind direction. Apply limiter based on ratio of wave strengths.

Host of high-resolution methods developed since late 70’s: flux corrected transport, TVD methods, flux limiters, slope limiters, PPM, ENO, WENO, ...

Developed by: Boris, Book, Harten, Zwas, van Leer, Roe, Osher, Zalesak, Sweby, Colella, Woodward, Engquist, Chakravarthy, Shu, ...
Some past applications

- Volcanic flows, dusty gas jets, pyroclastic surges
- Seismic: drumbeat tremors at Mount St. Helens
- Druml lin formation
- Geophysical flow on the sphere
- Flow in porous media, groundwater contamination
- Ultrasound, lithotripsy, shock wave therapy
- Plasticity, nonlinear elasticity
- Electromagnetic waves, photonic crystals
- Hyperbolic equations on general curved manifolds (CLAWMAN)
- Chemotaxis and pattern formation
- Semiconductor modeling
- Traffic flow
- Multi-fluid, multi-phase flows, bubbly flow
- Incompressible flow (projection methods or streamfunction vorticity)
- Combustion, detonation waves
- Astrophysics: binary stars, planetary nebulae, jets
- Magnetohydrodynamics, plasmas
- Relativistic flow, black hole accretion
- Numerical relativity — gravitational waves, cosmology

R. J. LeVeque CIG AMR Tutorial, October 24, 2007
TsunamiClaw: (David George) Version of AMRCLAW specifically for tsunami modeling.

- Two dimensional shallow water equations
- Small amplitude waves relative to variations in bathymetry
- Rectangular grid, with dry cells above sea level
- Wet/dry interface moves during inundation

Need robust “dry-state Riemann solver”
GeoClaw

TsunamiClaw: (David George) Version of AMRCLAW specifically for tsunami modeling.

- Two dimensional shallow water equations
- Small amplitude waves relative to variations in bathymetry
- Rectangular grid, with dry cells above sea level
- Wet/dry interface moves during inundation

 Need robust “dry-state Riemann solver”

GeoClaw: Work in progress

Initially: generalize TsunamiClaw to other depth-averaged flows over topography with dry states, e.g.

- SWE: rivers, estuaries, storm surges
- Dam break problems, flows on steeper topography
- Debris flows: tsunami inundation, volcanos
- Landslides and avalanches
- Multi-layer SWE: internal waves, ocean models
Future plan: Other geophysical problems involving topography

- Three-dimensional flows over topography
- Two-dimensional vertical slices of such flows
- Volcanic jets and plumes (work with Marica Pelanti)
- Subsurface flows
- Seismic waves
- Coupled problems, e.g. poro-elastic, seismic/tsunami, magma flow/seismic, etc.
Future plan: Other geophysical problems involving topography

- Three-dimensional flows over topography
- Two-dimensional vertical slices of such flows
- Volcanic jets and plumes (work with Marica Pelanti)
- Subsurface flows
- Seismic waves
- Coupled problems, e.g. poro-elastic, seismic/tsunami, magma flow/seismic, etc.

Desired features?

- General interface to topography/bathymetry data sets,
- Better user interface — Python support
- Interface to other visualization tools — VisIt
- Parallel version
Adaptive Mesh Refinement (AMR)

- Cluster grid points where needed
- Automatically adapt to solution
- Refined region moves in time-dependent problem

Basic approaches:

- Cell-by-cell refinement
 Quad-tree or Oct-tree data structure
 Structured or unstructured grid
- Refinement on “rectangular” patches
 Berger-Colella-Oliger style
 (AMRCLAW and CHOMBO-CLAW)
AMR Issues

- Refinement in time as well as space
- Conservation at grid interfaces
- Accuracy at interfaces, Spurious reflections?
- Refinement strategy, error estimation
- Clustering flagged points into rectangular patches
Time stepping algorithm for AMR

- Take 1 time step of length k on coarse grid with spacing h.
- Use space-time interpolation to set ghost cell values on fine grid near interface.
- Take L time steps on fine grid.

 $L = \text{refinement ratio}, \quad \hat{h} = h/L, \quad \hat{k} = k/L.$

- Replace coarse grid value by average of fine grid values on regions of overlap — better approximation and consistent representations.
- Conservative fix-up near edges.

\[
\begin{align*}
Q_{0}^{0} \quad & \quad Q_{1}^{0} \\
Q_{0}^{2} \quad & \quad Q_{1}^{2} \\
Q_{0}^{m-2} \quad & \quad Q_{0}^{m-1} \quad & \quad Q_{0}^{m} \quad & \quad Q_{1}^{m} \\
Q_{0}^{m-1} \quad & \quad Q_{1}^{m-1} \\
Q_{0}^{j} \quad & \quad Q_{1}^{j} \\
\end{align*}
\]
Conservative fix-up

Coarse-grid update: \[Q_i^1 = Q_i^0 - \frac{k}{h} \left(F_{i+1/2}^0 - F_{i-1/2}^0 \right). \]

Fine-grid update: \[\hat{Q}_i^{n+1} = \hat{Q}_i^n - \frac{k}{h} \left(\hat{F}_{i+1/2}^n - \hat{F}_{i-1/2}^n \right), \quad n = 0, 1. \]

Corrections: \[Q_{j-1}^1 := \frac{1}{2} (\hat{Q}_{m-1}^2 + \hat{Q}_m^2). \]

\[Q_j^1 := Q_j^1 + \frac{k}{h} \left[\frac{1}{2} (\hat{F}_{m+1/2}^0 + \hat{F}_{m+1/2}^1) - F_j^0 \right]. \]

Global conservation of the total mass:

\[\hat{h} \sum_{i \leq m} \hat{Q}_i + h \sum_{i \geq j} Q_j \quad \text{conserved up to boundary fluxes.} \]
Every k_{check} time-steps at each level (except finest), check all grid cells and flag those needing refinement.

Use one or more of the following flagging criteria:

- Richardson estimation of truncation error. Compare result after last two time steps on this grid with one time step on a coarsened grid.
- Estimate spatial gradient of one or more components of solution.
- Check for regions where refinement is user-forced to some level.
- Problem-specific, e.g. near shore for tsunami simulation.
- Other user-supplied criterion set in `flag2refine.f`.
Clustering Flagged Cells for Refinement

Use Berger-Rigoutsos algorithm

Clusters flagged points into a set of rectangular patches.

Tradeoff between:

- Many small patches cover flagged points with minimal refinement of unflagged points.
- But.... increases overhead associated with each patch, e.g. boundary values: ghost cell values set by copying or interpolation from other grids,

B-G algorithm has cut-off parameter: require that this fraction of refined cells be flagged (usually set to 0.7).
Tsunamis

- Small amplitude in ocean (< 1 meter) but can grow to 10s of meters at shore.
- Run-up along shore can inundate 100s of meters inland
- Long wavelength (as much as 200 km)
- Propagation speed \sqrt{gh} (bunching up at shore)
- Average depth of Pacific or Indian Ocean is 4km
 \Rightarrow average speed 200 m/s \approx 450 mph
Surface elevation on scale of 10 meters:

Cross-section on scale of kilometers:
Sumatra event of December 26, 2004

Magnitude 9.1 quake near Sumatra, where Indian tectonic plate is being subducted under the Burma platelet.

Rupture along subduction zone
\[\approx 1200 \text{ km long, } 150 \text{ km wide} \]

Propagating at \[\approx 2 \text{ km/sec} \] (for \[\approx 10 \text{ minutes} \])

Fault slip up to 15 m, uplift of several meters.
(Fault model from Caltech Seismolab.)

www.livescience.com
Tsunami simulations

- 2D shallow water + bathymetry
- Finite volume method
- Cartesian grid
- Cells can be dry \((h = 0)\)
- Cells become wet/dry as wave moves on shore
- Mesh refinement on rectangular patches
- Adaptive — follows wave, more levels near shore
Local modeling near Madras
Adaptive mesh refinement is essential

Zoom on Madras harbors with 4 levels of refinement:

- Level 1: 1 degree resolution ($\Delta x \approx 60$ nautical miles)
- Level 2 refined by 8.
- Level 3 refined by 8: $\Delta x \approx 1$ nautical mile (only near coast)
- Level 4 refined by 64: $\Delta x \approx 25$ meters (only near Madras)

Factor 4096 refinement in x and y.

Less refinement needed in time since $c \approx \sqrt{gh}$.

Runs in a few hours on a laptop.

Movie
Tsunami simulations

Movies:
- Fault area
- Bay of Bengal
- Sri Lanka
- Indian Ocean
- Zoom on Madras

For movies, see

http://www.amath.washington.edu/~dgeorge/research.html
Seismic waves in layered earth

Layers 1 and 3: $\rho = 2$, $\lambda = 1$, $\mu = 1$, $c_p \approx 1.2$, $c_s \approx 0.7$

Layer 2: $\rho = 5$, $\lambda = 10$, $\mu = 5$, $c_p = 2.0$, $c_s = 1$

Impulse at top surface at $t = 0$.

Solved on uniform Cartesian grid (600×300).
Seismic wave in layered medium

Red = \text{div}(u) [P-waves], \quad \text{Blue} = \text{curl}(u) [S-waves]
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], Blue = $\text{curl}(u)$ [S-waves]
Seismic wave in layered medium

Red = \text{div}(u) \ [P\text{-waves}], \quad \text{Blue} = \text{curl}(u) \ [S\text{-waves}]
Seismic wave in layered medium

Red = \text{div}(u) [P-waves], \quad \text{Blue} = \text{curl}(u) [S-waves]
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], \quad Blue = $\text{curl}(u)$ [S-waves]
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], \hspace{1cm} \text{Blue} = \text{curl}(u) [S-waves]
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], \hspace{1cm} Blue = $\text{curl}(u)$ [S-waves]
Seismic wave in layered medium

Red = \text{div}(u) \ [P\text{-waves}], \quad \text{Blue} = \text{curl}(u) \ [S\text{-waves}]
Seismic wave in layered medium

Red = \text{div}(u) \text{ [P-waves]}, \quad \text{Blue} = \text{curl}(u) \text{ [S-waves]}
Seismic wave in layered medium

Red = \text{div}(u) \ [P\text{-waves}], \quad \text{Blue} = \text{curl}(u) \ [S\text{-waves}]
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], Blue = $\text{curl}(u)$ [S-waves]

Four levels with refinement factors 4, 4, 4

Div (red) and Curl (blue) at $t = 0.10$
Seismic wave in layered medium

Red = div(u) [P-waves], Blue = curl(u) [S-waves]

Four levels with refinement factors 4, 4, 4

Div (red) and Curl (blue) at t = 0.20
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], Blue = $\text{curl}(u)$ [S-waves]

Four levels with refinement factors 4, 4, 4

R. J. LeVeque
CIG AMR Tutorial, October 24, 2007

Div (red) and Curl (blue) at $t = 0.30$
Seismic wave in layered medium

Red = $\text{div}(u)$ [P-waves], Blue = $\text{curl}(u)$ [S-waves]

Four levels with refinement factors 4, 4, 4

Div (red) and Curl (blue) at $t = 0.40$
Seismic wave in layered medium

Four levels with refinement factors 4, 4, 4

Div (red) and Curl (blue) at $t = 0.40$
Latitude-Longitude grid on sphere

Logically rectangular, but suffers from “pole problem”

- Grid lines coalesce at poles, tiny cells
- Small time steps needed for explicit methods
Cubed Sphere Grid: another popular approach

Six logically rectangular grids are patched together.

Data is transferred between patches using ghost cells

Refs: Sadourny (1972), Ronchi, Iacono, Paolucci, Rancic, Purser, Messinger,...

Rossmanith implemented with CLAWPACK
Boundary conditions for cubed sphere
Our approach for circles

Radial projection grid:

Computational domain is square $[-1, 1] \times [-1, 1]$.

Map each point on concentric square of “radius” $d \leq 0$ radially inward to circle of radius d.

Movie of radial projection
Our approach for circles

Smother grid:

Map line segment \((-d, d)\) to \((d, d)\) to circular arc of radius \(R(d)\) passing through the points \((-D(d), D(d))\) and \((D(d), D(d))\).

Similarly in other three quadrants.

\[D(d) = d, \quad R(d) = 1 : \quad D(d) = d, \quad R(d) = 1 : \]
Our approach for circles and sphere

Redistribute points near boundary:

\[D(d) = d(2 - d), \quad R(d) = 1 : \]

Gives good mapping to upper hemisphere (think of looking down on sphere)
Our approach for sphere

Map $[-1, 1] \times [-1, 1]$ to unit circle by this approach.

At each point set $z = \sqrt{1 - (x^2 + y^2)}$.

This defines mapping of $[-1, 1] \times [-1, 1]$ to upper hemisphere.

Map points in $[-3, -1] \times [-1, 1]$ to lower hemisphere by similar mapping.

This defines mapping of rectangle $[-3, 1] \times [-1, 1]$ to sphere.

Ratio of largest to smallest cell is < 2.

Grid is highly non-orthogonal at a few points near equator.

Movie of mapping
Numerical results on the sphere

Direct application of CLAWPACK — wave-propagation finite volume method

AMRCLAW can also be used.

Movie — advection on the sphere

Movie — in computational rectangle

Movie — shallow water on the sphere

Movie — depth vs. “latitude” compared to 1d solution
Our approach for shells

Above approach can be used on sphere and then extended radially:

For most applications wouldn’t want to extend into origin for full ball — radial lines meet at center and give small cells.

Instead can use 3d version of circle mapping
3D hexahedral grid in the ball
Acoustics with inclusions

120 × 40 Cartesian grid:

120 × 40 mapped grid:
Acoustics with inclusions

120 × 40 Cartesian grid:

120 × 40 mapped grid:
Acoustics with inclusions: pressure gauges

\[x = 0.5, \]

\[x = 0.25: \]
Conclusions

- High-resolution (shock capturing) methods good also for wave propagation in heterogeneous media.
- Low dispersion, accurately captures reflection and transmission.
- Refinement on rectangular patches is efficient and effective.
- Wave propagation algorithms work well even on highly deformed grids.
- Challenging geophysical flow/wave problems often have special needs.
- Flexible open-source software is useful.