Structure of Gale

- **Gale/**
 - README, RELEASE_NOTES, INSTALL*
 - MIGRATION, UPGRADE
 - COPYING
 - tools/
 - configure*, *.in, meta-template.c, Sconstruct, config/, python/
 - documentation/
 - input/
 - benchmarks/, cookbook/, examples/
 - src/
src/

- StGermain/
 - Basic utilities
- StgFEM/
 - Finite elements, solvers
- PICellerator/
 - particles
- Underworld/
 - Rheologies
- Gale/
 - Main executable, extras
StGermain/

- Base/
- Discretisation/
- FD/
 - Built, but not used
- SConscript
 - Like a makefile
- compatibility/
 - Handles different versions of Petsc
- doc/
 - Only for automatically generated documentation
StGermain/

- libStGermain/
 - For building a StGermain library
- libStGermainAll/, pyre/, Regresstor/, Services/, src/, Viewers/
 - Not built
StGermain/Base

- Automation/
- Container/
- Context/
- Extensibility/
- Foundation/
- IO/
StGermain/Base

- FlattenXML/
 - Executable to flatten input files into one, big file
- ListPlugins/
 - Executable to list all of the plugins that an input file uses.
- src/
 - For making a StGermainBase library
- Python/, tests/
 - Not built
StGermain/Base/Automation

- SConscript
- src/
- tests/
 - Not built
StGermain/Base/Automation

- Automation.h, Init.c, Init.h, Finalise.c, Finalise.h, types.h, shortcuts.h
 - Code to make a StGermainBaseAutomation library
- offsets.h
 - pointer voodoo
StGermain/Base/Automation

- All of the remaining files come in two's or three's: foo.c, foo.h, foo.meta
- These are meant to be objects as in C++, Java, etc.
- But this is C, not C++. So there are some macro hacks to emulate it.
#define __SetVC
 /* General info */
 __VariableCondition
 /* Virtual info */
 /* Stg_Class info */
 Name _dictionaryEntryName;
 SetVC_Entry_Index _entryCount;
 SetVC_Entry* _entryTbl;
 IndexSet* _vcset;

 struct _SetVC { __SetVC };
*.meta files

- *.meta files are processed to create components.
- Components are the things that you enumerate in an input file.
StGermain/Base/Automation: components

- CompositeVC
- SetVC
- Stg_Component
- VariableAllVC
- VariableCondition
- Variable
StGermain/Base/Automation: other objects

- CallGraph
- ComponentRepository
- DocumentationComponentFactory
- LiveComponentRegister
- VariableDumpStream
- Variable_Register
- VariableCondition_Register
StGermain/Base/Automation: other objects

- RegisterFactory
- Stg_ComponentMeta
- Stg_ComponentRegister
- Stg_ComponentFactory
- ConditionFunction
- ConditionFunction_Register
- HierarchyTable
StGermain/Base/Container

- Array
- BTree
- HashTable
- Heap
- Map
- Set
- List
- Map
- MPI convenience functions
• AbstractContext
 – This is like a global variable that serves as the root of the object tree.
 – StgFEM, PICellerator, and Underworld all derive from this class to define their own “Context”.
StGermain/Base/Extensibility

- **EntryPoints**
 - These components are a way of having the code execute a list of functions, determined at run time.
 - For example, the Stokes equation adds an EntryPoint that calculates the size of the timestep.

- **Plugins**
 - Allows code to be loaded dynamically from a library depending on the input file
StGermain/Base/Foundation

- Memory routines
- Object, Class
- Other utilities
StGermain/Base/IO

- Read and parse input files
- Formatted output
 - Regular and Debug streams
 - Only one set of output for all processors
StGermain/Discretisation

• Geometry
 – Mesh Topology: Delaunay, IJK
 – Trig, Vector, Tensor, complex math

• Mesh
 – Create Meshes and sync them in parallel
 – SurfaceAdaptor implements distorted upper boundaries.

• Shape
 – Box, Cylinder, Sphere, Union, Intersection, etc.
StGermain/Discretisation

• Swarm
 – Particle layout, particle exchange between processors, particle variables

• Utils
 – Initial condition, boundary conditions, and fixed internal degrees of freedom
StgFEM

• Apps
 – Input files: not guaranteed to work. They often require gLucifer

• Templates
 – License templates for individual files

• src
 – Not built

• libStG_FEM
 – Makes StgFEM library
StgFEM

- Assembly
 - Assembles Gradient, Isoviscous, Laplacian, and Thermal Buoyancy terms

- Discretisation
 - Finite Element Mesh, constant and linear elements, FE variables, FE-Swarm variables

- SLE

- plugins
StgFEM/SLE

• **LinearAlgebra**
 - Mostly an interface to Petsc

• **MultiGrid**
 - Broken

• **SystemSetup**
 - Sets up the system of linear or nonlinear equations
StgFEM/SLE/ProvidedSystems

- AdvectionDiffusion
- Energy
- StokesFlow
 - Uzawa
 - Penalty – untested
 - UpdateDt
StgFEM/plugins

- LevelSetPlugin, MultiGrid, Application
 - Not built
- Document
 - Prints out info about all components
- CompareFeVariableAgainstReferenceSolution, VelicAnalyticSolutions
 - Analytic solutions
- FeVariableImportExporters
 - Interchange with Abaqus: Untested
StgFEM/plugins

• Output
 – Print out various statistics: CPUPTime, Memory, FE variables.

• StandardConditionFunctions
 – A large number of mathematical convenience functions (e.g. for initial conditions)
PICellerator

• MaterialPoints
 – Interpolating between grid and particles
 – particle advection

• PopulationControl
 – Creates and destroys particles as needed

• Voronoi
 – Voronoi cells are created from the particles positions and particle values are weighted accordingly

• Weights
 – Handles how particles are weighted.
PICellerator

- Apps
 - Probably non-working input files
- Utils
 - Buoyancy Force
 - Hydrostatic Term
 - Subtracts out a background hydrostatic pressure
- Plugins
 - CalculateParticleDisplacement
 - Output/MaterialCentroid
Underworld

- **InputFiles**
 - Probably broken

- **Rheology**
 - Von Mises, Drucker Prager, Anisotropic, etc.

- **Utils**
 - Radiogenic heating
 - Pressure & Temp output for particles
 - DensityField, StressField, and ViscosityField
Underworld

• plugins
 – EulerDeform
 • Moves the mesh after every timestep so that it covers the new location of the particles.
 • This would be the place to start if you want a poor man's adaptive meshing.
 – Output
 • VTKOutput: the workhorse output routine
 – Everything else is untested.
Gale

- src/
 - Contains main()

- plugins
 - SurfaceProcess
 - Does not work fully in parallel yet

- Utils
 - Q1-Q1 stabilization term
 - Hydrostatic Correction
 - Divergence Forces
 - Stress BC
 - Kinetic Friction
Important Parts

- StGermain
 - Base
 - Automation
 - Container
 - Context
 - Extensibility
 - Foundation
 - IO
 - Discretisation
 - Geometry
 - Mesh
 - Shape
 - Swarm
 - Utils

- StgFEM
 - Assembly
 - Discretisation
 - SLE
 - LinearAlgebra
 - SystemSetup
 - ProvidedSystems
 - AdvectionDiffusion
 - Energy
 - StokesFlow
 - plugins
 - StandardConditionFunctions
Important Parts

• PICellerator
 – MaterialPoints
 – PopulationControl
 – Voronoi
 – Weights
 – Utils
 – plugins

• Underworld
 – Rheology
 – Utils
 – plugins
 • EulerDeform
 • VTKOutput

• Gale
 – src
 – Plugins
 • SurfaceProcess
 – Utils
Control Flow

- It all starts in src/Gale/src/main.c
 - Initializes MPI
 - Reads the input file
 - Dynamically determines what to do next
 - Following the execution in a debugger is basically impossible