High-resolution seismic array imaging based on spectral element simulations

Piero Basini, Ping Tong, Qinya Liu

Department of Physics
University of Toronto

July 14-17, 2013

Collaborators:
Yingjie Yang (Macquarie U), Carl Tape (U of Alaska)
Chinwu Chen (National Taiwan U), Dimitri Komatitsch (Aix-Marseille U)
Previous adjoint tomography of SoCal crust (Tape et al 2009, 2010):
- 143 crustal earthquakes + 243 stations
- traveltime measurements over 2-30, 3-30, and 6-30 sec bands.
NCFs for socal stations

- **NCF**: cross-correlation of ambient noise recording between two seismic stations stacked over long period of time
- **Data processing**: remove IR, filter between 3-50 sec, spectral whitening, stack cross-correlation of daily data over three years (Bensen et al. 2007)
- \sim 13,000 V-V NCFs between 147 stations; only phase is used
- We assume $\frac{\partial}{\partial t} (\text{NCF}) \sim$ Greens functions between master and receiver station

GMR.CI.BHZ

FUR.CI.BHZ

<table>
<thead>
<tr>
<th>Station</th>
<th>CC</th>
<th>dT</th>
<th>dA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMR.CI.BHZ</td>
<td>0.93</td>
<td>1.00</td>
<td>0.48</td>
</tr>
<tr>
<td>FUR.CI.BHZ</td>
<td>0.82</td>
<td>2.00</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

Time (s)
NCFs for socal stations: spectra

- primary (∼ 14 s) and secondary (∼ 7 s) microseismic peaks; dominant energy between 5-20 sec.

- measurements by FLEXWIN (Maggi et al, 2008)
 - 5 – 50 (∼ 8600)
 - 10 – 50 (∼ 16700)
 - 20 – 50 (∼ 2000)

- start iteration for Vs at 10 – 50 sec, and go down to 5 – 50 sec subsequently
Forward and adjoint simulations (i.e., synthetics and kernels) are computed by the SPECFEM3D package (an early version)

- \(\sim 30 \) min for one forward and \(\sim 1 \) hour for one adjoint simulation
NCF depth sensitivities

Shear-wave speed (Vs) depth sensitivity of a single traveltime measurement peaks at $\sim 1/3$ of wavelength. Cross-sections of event kernels between stations: 5 sec \rightarrow 5 km \Rightarrow help resolve mid-to-lower crustal structure.
Shear-wave speed (Vs) depth sensitivity of a single traveltime measurement peaks at $\sim 1/3$ of wavelength.

Cross-sections of event kernels between stations: 10 sec \rightarrow 10 km help resolve mid-to-lower crustal structure.
NCF depth sensitivities

Shear-wave speed (V_s) depth sensitivity of a single traveltime measurement peaks at $\sim 1/3$ of wavelength. Cross-sections of event kernels between stations: 20 sec \rightarrow 20 km \Rightarrow help resolve mid-to-lower crustal structure
Model update by subspace method at each iteration

Total misfit \(\Phi = \frac{1}{2} \frac{1}{N_{\text{meas}}} \sum_{e,s,p} \left(\frac{T_s - T_d}{\sigma_T} \right)^2 \)

Event kernels (for one master station):

\[
\delta \phi_e = \int_V K_{m;s,p}^e(x) \frac{\delta m}{m} \, d^3x
\]

Assume model update is a linear combination of event kernels at every iter (Tape et al 2009):

\[
\frac{\delta m}{m}(x) = \sum_e K^e(x)C,
\]

where

\[
C = (N + \lambda I)^{-1} \Phi, \quad \text{kernel Hessian } N_{ij} = \int K_{i}^e K_{j}^e \, d^3x
\]
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-4}$

- compute model update $\frac{\delta m}{m}$ based on the coefficients $C = (N + \lambda I)^{-1}\Phi$

- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve):

![Graph showing L-curve with λ values on the x-axis and φ values on the y-axis.](image)
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-5}$

- compute model update $\frac{\delta m}{m}$ based on the coefficients $C = (N + \lambda I)^{-1}\Phi$
- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve):
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-6}$

- compute model update $\delta m/m$ based on the coefficients $C = (N + \lambda I)^{-1}\Phi$

- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve):
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-7}$

- compute model update $\frac{\delta m}{m}$ based on the coefficients $C = (N + \lambda I)^{-1} \Phi$

- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve):

![Graph showing the L-curve for different λ values.](image)
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-8}$

- compute model update $\frac{\delta m}{m}$ based on the coefficients $\mathbf{C} = (N + \lambda I)^{-1}\Phi$

- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve):
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-9}$

- compute model update $\frac{\delta m}{m}$ based on the coefficients $C = (N + \lambda I)^{-1} \Phi$
- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve):
Selection of λ

Choose a set of λ values, for $\lambda = 10^{-10}$

- compute model update $\frac{\delta m}{m}$ based on the coefficients $C = (N + \lambda I)^{-1}\Phi$

- compute sum of event misfits ϕ for a subset of master stations (~ 20), and plot ϕ against δm (L-curve): $\lambda = 10^{-7}$

![Graph showing the relationship between λ value and δm](image)
Reduction of total misfit over iterations

\[\chi = \frac{1}{2} \frac{1}{N_{\text{meas}}} \sum_{e, s, p} \left(\frac{T_s - T_d}{\sigma_T} \right)^2 \]

- Best value is 0.5 when all time shifts are within STD
- Convergence at 4 – 5th iter for 10 – 50 sec
Reduction of total misfit over iterations

\[\chi = \frac{1}{2} \frac{1}{N_{\text{meas}}} \sum_{e,s,p} \left(\frac{T_s - T_d}{\sigma_T} \right)^2 \]

- Best value is 0.5 when all time shifts are within STD
- Convergence at 4–5th iter for 10–50 sec
Reduction of total misfit over iterations

\[
\chi = \frac{1}{2} \frac{1}{N_{\text{meas}}} \sum_{e,s,p} \left(\frac{T_s - T_d}{\sigma_T} \right)^2
\]

- Best value is 0.5 when all time shifts are within STD
- Convergence at 4 – 5th iter for 10 – 50 sec
Reduction of total misfit over iterations

\[\chi = \frac{1}{2} \frac{1}{N_{\text{meas}}} \sum_{e,s,p} \left(\frac{T_s - T_d}{\sigma_T} \right)^2 \]

- Best value is 0.5 when all time shifts are within STD
- Convergence at 4 – 5th iter for 10 – 50 sec
Reduction of total misfit over iterations

\[
\chi = \frac{1}{2 N_{\text{meas}}} \sum_{e,s,p} \left(\frac{T_s - T_d}{\sigma_T} \right)^2
\]

Best value is 0.5 when all time shifts are within STD

Convergence at 4 – 5th iter for 10 – 50 sec
Selected time windows over iterations

- 10 – 50 sec windows
- Reduction of traveltime anomalies (esp. the slow arrivals)
- More symmetric distribution of traveltime anomaly
Selected time windows over iterations

- 10 – 50 sec windows
- Reduction of traveltime anomalies (esp. the slow arrivals)
- More symmetric distribution of traveltime anomaly
Selected time windows over iterations

- 10 – 50 sec windows
- Reduction of traveltime anomalies (esp. the slow arrivals)
- More symmetric distribution of traveltime anomaly
Selected time windows over iterations

- 10 – 50 sec windows
- Reduction of traveltime anomalies (esp. the slow arrivals)
- More symmetric distribution of traveltime anomaly
Vs Model updates: from m16 to m20

Smoothed by 15km/5km. Up to 3 – 4% model update. 1st iter: m17
Vs Model updates: from m16 to m20

Smoothed by 15km/5km. Up to 3 – 4% model update. 2nd iter: m18
Vs Model updates: from m16 to m20

Smoothed by 15km/5km. Up to 3 – 4% model update. 3rd iter: m19
Vs Model updates: from m16 to m20

Smoothed by 15km/5km. Up to 3 – 4% model update. 4th iter: m20
Vs Model updates: from m16 to m20

Smoothed by 15km/5km. Up to 3 – 4% model update.

Last model update: m20 \(\rightarrow\) m19

Q. Liu (UofT)
Future work

- Validation by earthquake data (annually ~ 40 eqks with $M_w \geq 3.5$ in socal)
- How do 5 – 50 sec data do over the iterations?
Future work

- Validation by earthquake data (annually \sim 40 eqks with $M_w \geq 3.5$ in socal)
- How do 5 – 50 sec data do over the iterations?
Future work

- Validation by earthquake data (annually ~ 40 eqks with $M_w \geq 3.5$ in socal)
- How do 5 – 50 sec data do over the iterations?
Future work

- Validation by earthquake data (annually \(\sim 40\) eqks with \(M_w \geq 3.5\) in socal)
- How do 5 - 50 sec data do over the iterations?

⇒ include 5 - 50 sec NCF data.
- include other components (e.g., T-T etc) of NCFs.
Seismic array imaging

- body- and surface-wave tomography adapted to regional arrays. Traveltime inversions \(\rightarrow\) resolve structure of the size of Fresnel zone.
- e.g., data-adaptive, multiscale approach of finite-frequency, traveltime tomography of central Tibet (HI-CLIMB, Hung et al, 2011)
- converted/scattered wave imaging → resolve structure of the size of wavelength of dominant waves (receiver function, migration, generalized Radon transform)
e.g., migrated images of subducted slabs based on data from BEAAR array in Alaska and CASC93 array in Oregon (Rondenay et al, 2008)
RF: 1-3 sec for P waves and 3-6 sec for S waves; Full global seismic wave simulation at $T < 8.0$ sec numerically costly.

Adaptation of adjoint tomography to scattered-wave imaging:

- forward simulation: response of local media to tele-seismic waves (for upper mantle imaging, assume to be plane waves)
- interface 1D FK solution with SEM simulations (Tong et al, *submitted*, 2013)
SEM-FK hybrid method

- Response of 1D media to plane-wave incidence computed by frequency-wavenumber (FK) method (Zhu & Rivera, 2002) and saved on the boundary as \((x, t)\).
- Spectral-element method (SPECFEM2D) is applied to the computation domain that includes all local heterogeneities interfacing occurs through absorbing boundary condition:

\[
T_{\text{scatt}} \cdot \hat{n} = \rho \alpha [\hat{n} \cdot \partial_t u_{\text{scatt}}] \hat{n} + \rho \beta [\hat{t} \cdot \partial_t u_{\text{scatt}}] \hat{t}
\]
Validation of SEM-FK hybrid method: two-layer model

(a) Horizontal

(b) Vertical
Adjoint tomography for scattered waves

Minimizing

$$\phi(m) = \frac{1}{2} \sum_{i,r,e} \int \|w_i(t)[u(x_r^i, t, \theta_e; m) - d(x_r^i, t, \theta_e)]\|^2 dt,$$ \hspace{1cm} (1)

and its variation

$$\delta \phi = \int_S (K_{\rho'} \delta \ln \rho + K_\alpha \delta \ln \alpha + K_\beta \delta \ln \beta) d^2x + \int_{\Gamma} K_d \delta \ln d \, d\mathbf{x} \hspace{1cm} (2)$$

\(K_{\rho'}, K_\alpha, K_\beta\) and \(K_d\): Fréchet kernels of density, P- and S-wave speed, and Moho topography (e.g. Tromp et al. 2005)

Then a nonlinear conjugate gradient method is used to minimize \(\phi\) iteratively.
Synthetic tests: Moho-only inversion

- **Target model**: sinusoidal Moho undulation with maximum of 3 km.
- **Event**: P plane-wave incidence angles of 4°, 12°, 20° and 28° from both left and right with a cut-off frequency of 2 Hz.
- **Station**: Ps waveforms from 10 receivers with equal spacing of 10 km.
Moho inversion with Ps phase

K_{d}

Depth (km)

Distance (km)

m_1

m_2

m_3

m_4

m_5

m_6

Q. Liu (UofT) Seismic Imaging July 14-17, 2013 21 / 36
Moho inversion with Ps phase

![Graphs showing displacement and misfit](image)

- (a) m^0
- (b) m^3
- (c) m^6
- (d) m^0
- (e) m^3
- (f) m^6
- (g) Misfit ϕ vs. iteration

Q. Liu (UofT)
Seismic Imaging
July 14-17, 2013 22 / 36
Volumetric structural inversion with Ps waveform

- 6% slow Vs anomaly (12x8 km) in the mid-crust
- 8 events, 10 receivers, cut-off period 1 sec
- individual kernels → isochrons (Rondenay 2008)
However, we only recovered on average 1.8% slow Vs anomaly.
Ps waveform inversion with preconditioner

(a) Horizontal
(b) Vertical
(c) Difference
(d) Surface

1. Pp
2. Ps
3. PpPmp
4. PpPms, PsPmP, PpSmp
5. PsSmp, PsPms, PpSms
6. PpPmpPmp
7. PsSms
Ps waveform inversion with preconditioner

Scaled product of Ps, $PpPmp$ and the remaining coda waves X kernels as preconditioner

$$g_\rho(x) = \frac{1}{\eta} \prod_{i=1}^{3} g_{\rho, i}(x),$$

(3)
Ps waveform inversion with preconditioner

With scaled product of kernels as preconditioner, we recover almost the full amplitude of Vs anomaly.
slab model: -6% slow oceanic crust (14 km) atop +4% fast oceanic mantle (37 km)

continental Moho depression 10 km

16 events, 20 receivers with spacing of 10 km

hierarchical inversion over 10, 6.25, 5, 4 and 2.5-sec waveform of both P and its coda waves.
Full waveform inversion: 2-layer subducted slab model

(a) 10.0 sec

(b) 6.25 sec

(c) 5.00 sec

(d) 4.00 sec

(e) 2.50 sec

Q. Liu (UofT)
Full waveform inversion of 2-layer subducted slab: Final model

- recovery of Moho variation
- sharp subducted oceanic Moho
- almost full recovery of anomaly amplitude

(a) Density
(b) Vp
(c) Vs
Conclusions

- Preliminary adjoint tomography based on NCFs of southern California stations, which provide improved resolution for the mid- and lower crust, complementary to earthquake data.

- Implement an SEM-FK hybrid method to simulate the response of local heterogeneities to plane-wave incidence, and allow full waveform inversions of teleseismic converted/scattered waves for the imaging of crust and upper-mantle structures beneath seismic arrays.

- Scaled product of sensitivity kernels for different phases as preconditioner, the combination of traveltime and waveform inversion, and hierarchical inversions from long- to short-period waveforms proved to be beneficial in high-resolution seismic array imaging based on SEM-FK hybrid method.
USArray TA deployment plan

Transportable Array Installation Plan
As of August 15, 2007.

Station removal follows in 24 months.
Event: P plane-wave incidence angles of 4°, 12°, 20° and 28° from both left and right with a cut-off frequency of 1 Hz.

Station: 10 receivers with equal spacing of 10 km.

Anomaly: a 6.0% slower Vp anomaly (12 km by 8 km) in the middle crust.
Combined traveltime and waveform inversion

Traveltime

Depth (km)

Distance (km)

(a) Model 1
(b) Model 8
(c) Model 16

Waveform

Depth (km)

Distance (km)

(d) Model 1
(e) Model 4
(f) Model 8

Misfit ϕ

Iteration

(g)
(h)