Mantle mixing
Peter van Keken (Carnegie Institution for Science)

with participation from:
JP Brandenburg, Chris Ballentine, Erik Hauri, Jeroen Ritsema.
Mantle mixing
Peter van Keken (Carnegie Institution for Science)

Present day mantle structure
Geodynamical stability of lower mantle heterogeneity
Role of MORB recycling
Time integrated view from geochemistry
A case study (to inspire?)
Correlations exist between LLSVP and ULVZ (Garnero et al., 1998; Cottaar and Romanowicz, 2012).
Garnero & McNamara, Science, 2008
See also review by Tackley, ESR, 2012
Possible dynamical explanation: thermochemical piles kept in shape by past plate tectonic movement
LLSVP explanations

• Early earth differentiation (‘primordial’) – e.g., due to magma ocean differentiation (Labrosse et al., 2007; Carlson et al., 2014)

• Recycling (and mixing back in) of oceanic crust (Christensen and Hofmann, 1994; Brandenburg et al., 2008)

• Thermal only (Schubert et al., 2004; Davies et al., 2012).
Recycling of dense oceanic crust
Preservation of a ‘primordial’ layer

Li et al., 2014; see also, Li et al., 2015, 2016 (+pPv); Li and McNamara, 2013 (- MORB); Mulyukova et al., 2015; Nakagawa and Tackley, 2014; Ulvrova et al., 2012 (basal magma ocean)).
Various species in the mantle ‘zoo’

Hofmann, Treatise on Geochemistry, 2003; updated 2014

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Could Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMM</td>
<td>Depleted MORB Mantle</td>
<td>Upper mantle</td>
</tr>
<tr>
<td>HIMU</td>
<td>High original U/Pb (‘mu’)</td>
<td>Recycled oceanic crust</td>
</tr>
<tr>
<td>EM1</td>
<td>Enriched Mantle 1</td>
<td>Sediments / cont. crust?</td>
</tr>
<tr>
<td>EM2</td>
<td>Enriched Mantle 2</td>
<td>Sediments / cont. crust?</td>
</tr>
</tbody>
</table>
OIB (ocean island basalts) have biggest spread
MORB (mid-oceanic ridge basalts) cluster more but are not homogenous
Isotope ratios in oceanic basalts: Pb/Pb

Any process that increases U/Pb

Any process that decreases U/Pb

compiled from the PetDB Database http://www.petdb.org
Isotope ratios in oceanic basalts: Sr/Nd

Addition of sediment from continental crust compiled from the PetDB Database http://www.petdb.org
Evidence of preservation of very old ‘primordial’ mantle

3He

Hf-W (Rizo et al., 2016)

Sm-Nd (Boyet and Carlson, 2005)

Ne + Xe (Mukhopadhyay, 2012)
Constraints for mantle convection and mixing

Present day heat flow 44 TW (Pollack et al., 1993)

Present day plate velocities 4-5 cm/yr; ~30% toroidal (Lithgow-Bertelloni and Richards, 1998; Gordon, 2001; Bird, 2003)

LM is ~30x times more viscous than UM (Mitrovica and Forte, 2004; Lithgow-Bertelloni and Richards, 1998)

Slabs penetrate into lower mantle in some places (Grand, van der Hilst, Ritsema, many others)

50% of produced \(^{40}\text{Ar}\) in atmosphere

Earth has plate tectonics and has had it for a while
Brandenburg and van Keken, 2007, G-Cubed
Oceanic crust extraction and recycling; no CC formation
Oceanic crust extraction and recycling; one stage CC formation
Oceanic crust extraction and recycling; two stage CC formation: take into account fluid mobility of Pb, Rb, Nd after 2.3 Ga.
Geochemical Model: Extraction of the continental crust

Model predictions vs. Rudnick and Gao, 2003

Overall preferred model
30% of mantle has never seen melting
N&V for Chauvel et al., Nature Geoscience, 2008 indicating both oceanic crust and sediments are recycled through deep mantle

GEODYNAMICS

The ups and downs of sediments

Neither recycled oceanic crust nor sediments alone can explain the composition of ocean-island basalts, but how about a mixture of the two? Recent modelling using the isotopes of hafnium and neodymium appears to support this contention.

Terry Plank1,2 and Peter E. van Keken3

are in 1the Department of Earth Sciences at Boston University, Boston, Massachusetts 02215, USA; 2the Lamont-Doherty Earth Observatory of Columbia University, Palisades New York 10964, USA and 3the Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA.

E-mail:tplank@bu.edu; keken@umich.edu

For us, recycling involves great effort — sorting empty bottles, collecting old newspapers and taking the broken fridge to the recycling site. The Earth, however, can recycle its
Convert T and C to dVs using method from Cobden et al. (2008) based on Perple_X (Connolly et al., 2005), Stixrude & Lithgow-Bertelloni (2005), Khan et al. (2006).

Find tomographic expression as if modeled by S40RTS (Ritsema et al., 2011) model without excess eclogite density.
T (0-3000 C)

dVs predicted

-5% to 5%

$\text{dVs recovered in S40RTS}$

-2.5% to 2.5%