Geodynamics Workshop
October 17 2006
UT-Austin

Steve Owen
CUBIT Project Lead
CUBIT 10.2, Released Oct 15 2006

Product of Over 15 years R&D at Sandia, NM

Most used Meshing software at Sandia (300+ users, 500+ external licenses)

CAD-Based Meshing Toolkit

Specializes in all-hex meshes for complex assemblies

CAD Geometry diagnostics, clean-up and decomposition tools

Automatic Hex, tet, quad, tri meshing

Element quality diagnostics and mesh improvement

Professional cross-platform GUI

Command/script driven interface

Steve Owen
CUBIT Usage up 5X over 2 years

Computational Modeling Sciences Department

CUBIT 8.1 → CUBIT 9.0 → CUBIT 9.1 → CUBIT 10.0 → CUBIT 10.1

FY03 FY04 FY05 FY06

Sandia Usage

External Usage

CUBIT Usage up 5X over 2 years
CUBIT Licensing

• **Academic and Government Use License**
 – $300 Distribution Fee (One Time)
 – No per/license fee
 – Includes Government Contractors
 – Instructions at cubit.sandia.gov/licensing
 – About 2 weeks turnaround
 – Password to downloads site (includes all platforms and CAMAL)
 – Usage Tracking: Please help!

• **Commercial License**
 – Sandia does not offer directly
 – Non-exclusive distribution: CSimSoft
CUBIT Geometry

Meshing Algorithms

Geometry/CAD Abstraction

3rd Party Geometry Kernels Commercially Licensed

Mesh-based geometry

ACIS PRO/E CATIA MBG
Mesh Based Geometry

Computational Modeling Sciences Department

Facet File Format

Import Facet Definition

Import [Facets|AVS|STL] "<filename>"
[Feature_Angle] [LINEAR||Spline] [MERGE|no_merge]
[make_elements] [stitch] [improve]

- **feature_angle**: defines curves, surfaces
- **spline**: smooth Bezier patches
- **make_elements**: create tri elements
- **stitch**: create tri elements
- **improve**: collapse small edges at curves

Watertight connectivity needed to form volumes

Smooth triangulation

Smooth <surface_list> facets [iterations
<value>] [free] [swap]

STL and AVS formats supported
Mesh Based Geometry

Exodus II Format

Binary Format
Standard format used by Sandia FEA codes

Open Source Library

Includes:
Hex, Tet, Quad, Tri, Beam
Linear and Quadratic Elements
Boundary Conditions: Nodesets, Sidesets, Blocks, Attributes, Distribution factors
Results: Can contain vector and/or scalar results at multiple time steps

Import Command

Import Mesh Geometry
'<exodusII_filename>'
[Block <id_range>|ALL] [Start_id <id>]
[Use [NODESET]no_nodeset]
[SIDESET]no_sideset [Feature_Angle <angle>]
[LINEAR|Gradient|Quadratic|Spline]
[Deformed {Time <time>|Step <step>|Last} [Scale <value>]]
[MERGE|No_Merge] [merge_nodes <tolerance>]

Geometry from feature angle, boundary conditions and deformations at timestep
Example
CUBIT Adaptive Meshing Algorithm Library

- CUBIT’s core meshing algorithms
- Available as DLL or compiled library
- C or C++ style API
- Included in standard CUBIT license
- Could be used for remeshing during analysis

Requires boundary definition
Geometry queries defined by calling application
Opportunities

Computational Modeling Sciences Department

Geometric Modeling

GOCAD

Meshing

CUBIT

Triangulated surfaces

Solid Model

Steve Owen
Opportunities

Computational Modeling Sciences Department

Geometric Modeling

- GOCAD

Meshing

- CUBIT

Triangulated surfaces

Solid Model
Opportunities

Computational Modeling Sciences Department

• **Scripting**
 - Geometric reasoning/Human interaction on triangulated surfaces
 - Write CUBIT commands OR python scripts to guide CUBIT in creating solid model

• **Build into CUBIT**
 - CUBIT reads GOCAD data directly
 - Does geometric reasoning internally to create solid model

• **Use CAMAL/CUBIT inside geometric modeler**
 - Integrate CAMAL meshers into geometric modeler
 - GM handles all geometry definition
Opportunities

Computational Modeling Sciences Department

• **Scripting**
 - **Advantage**: Independence - Little or no interaction with CUBIT or GOCAD needed.
 - **Disadvantage**: No access to real data. Have to duplicate geometry by geometric reasoning. Inefficient

• **Build into CUBIT**
 - **Advantage**: Have access to CUBIT data. Can customize for GOCAD data. More efficient
 - **Disadvantage**: Requires source code licensing and interaction with CUBIT developers

• **Use CAMAL/CUBIT inside geometric modeler**
 - **Advantage**: Full access to geometric data. Single application. Most efficient
 - **Disadvantage**: Would require licensing and software agreements with GOCAD.
Opportunities

Parallel

– Current Approach

• *Subdivide geometry into simple blocks*
• *Generate CUBIT script to generate mesh on each block*
• *Run CUBIT on each node (1 node per block)*
• “Embarassingly parallel”
• **Advantage:**
 – Use of existing CUBIT technology.

• **Disadvantage:**
 – Managing interfaces to ensure conforming hexes: Relies on script to generate common interfaces

– Proposed Approach

• *Parallelize sweep algorithm*
• *Manage interfaces and balancing internally*
Opportunities

• All-hex algorithms
 – General for arbitrary geometry
 – Unconstrained Plastering

• Adaptive hex meshes
 – Refinement and coarsening based upon a sizing function
 – Conforming meshes

• Specific Capability Requests
 – …