Going Beyond an Elastic Halfspace
"CIG Short-Term Crustal Dynamics"

- Perspective of a user / observationalist
- N-1 workshops (LANL, CSM)

NSF (SCEC, CIG, EarthScope) & NASA

Mark Simons, Eric Hetland, and Mark Turner
Seismological Laboratory
Caltech
Potential (Generic) Targets

- Modeling the earthquake cycle in a plate boundary system while resolving both single events (at least quasi-statically) and the integrated effects of many events

- Modeling volcano dynamics

- Modeling glacier flow (ice sheets and mountain glaciers)

Primary timescale of interest is that during which there are not large scale changes in system geometry (a.k.a. “short term”)

Beyond building toy models, we are focused on challenges associated with modeling real geodetic observations
Observational motivation (50%) and associated modeling challenges (50%)

- Rheological complexity (visco-elasto-plastic / volumes and surfaces)
 - Memory \(\Rightarrow\) Internally consistent pre-stress
 - Non-linear bulk and fault rheologies
 - Temporal complexity/consistency \(\Rightarrow\) sec’s to \(10^6\) years

- Spatial complexity
 - Meshing
 - Rheology (geometric compatibility)

- The link to observations - parameter estimation

- Tag team with Brad Aagaard
Modern Geodesy - The impetus

Temporal and spatial resolution
- GPS networks
- Satellite radar interferometry

Examples:
- California strike slip
- Subduction zones
Pixel Tracking

Spatial resolution/complexity

InSAR

1999 Mw 7.1 Hector Mine EQ
Where is elastic stress accumulating to be released in future earthquakes?
What are the mechanics of the fault and surrounding regions?
What is the connection to permanent inelastic deformation (e.g., topography)?
log(t) afterslip suggests velocity strengthening frictional slip on fault

Afterslip controls aftershock production

Behavior very heterogeneous in space

Hsu et al., Science, 2006
Obvious geometric and rheological complexity (mapview and cross-section)
Inhomogeneous strain at multiple length scales
From earthquakes to 5 km high plateaus and 6+ km volcanoes
Aseismic pulse 3 years after 5 years of continuous rapid after slip under peninsula

1995 Mw 8.1 Earthquake

Complexity of slip behavior on a single fault
Earthquake “sees” long term structure during fault rupture

Chicken or Egg?

Variations in gravity are a proxy for permanent inelastic (long-term) deformation in the forearc.

2001 Mw 8.4 Earthquake
Thus far:

- All coseismic and postseismic examples are kinematic models (i.e., they invert for fault slip)
- They don’t let it evolve according to physics of friction) and they adopt either elastic half-spaces, or horizontally layered elastic halfspaces (no inelasticity)

None of these examples:

- Adopt 3D varying rheological properties (not even 3D elastic)
- Consistently explore the relationship between earthquakes, afterslip, and the long-term evolution of the plate boundary

A potential goal

Charles Williams, 2005
Challenge: How do we go beyond planar faults in an elastic half space?

Liu & Rice, 2006

"Real Friction"

Slip History on fault
• Systems with memory need internally consistent pre-stress (normally ignored - bad)

• Role of noise: Effectively a pre-stress issue
Spin Up / Noise Implications

Even if interested in system response from just 1 earthquake, one needs to spin up and look at N^{th} event.

<table>
<thead>
<tr>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear rheology</td>
</tr>
<tr>
<td>\Rightarrow Generate one characteristic space/time Green’s function for EQ plus delayed response (analytic or FEM)</td>
</tr>
<tr>
<td>\Rightarrow Add N events with appropriate time lags until steady-state is reached</td>
</tr>
<tr>
<td>Nonlinear rheology</td>
</tr>
<tr>
<td>\Rightarrow Run for a long time</td>
</tr>
<tr>
<td>- expensive - mesh distortion issues</td>
</tr>
</tbody>
</table>

Noise

\Rightarrow Run for a long time with many realizations
- real expensive - mesh distortion issues
Our initial focus (top tow)
Simplified Workflow

gocad \Rightarrow mesher \Rightarrow FEM

done by experts

meshing expert takes output from the gocad expert, some back-and-forth…

done by experts

communication: each person not entirely in fully aware of work in the other step, there may be replicated tasks…

costly: need to be able to pay the experts to do the work…
Simplified Workflow (the way we are doing it):

gocad \Rightarrow mesher \Rightarrow FEM

done by the inexperienced

in theory, one person can do the entire work-flow

with help from experts and the experienced

inexperience = not necessarily the best way to do things
Geologic Complexity and Meshing Challenges (I)
Start with this...
Structure of the forearc
Faults, material, etc.

Bangs et al., 2005
A geographic CAD model integrating available disparate structural constraints (GOCAD)
The Meshing Challenge

Bookkeeping
Materials + properties + interfaces + Gocad/Cubit/PyLith
Meshing Challenges (II)

- Geometric compatibility (damage) at fault intersections
- Sufficient quality for relevant physics on selected internal interfaces
- Efficient meshes:
 - E.g., resolution decreasing with distance from dislocations tips as a function of strain/strainrate - analytically predictable
 - Time-dependent meshes (time from last EQ?) with both refinement and coarsening (could deal with previous problem automatically)

E. California fault system
Summary Challenges (I)

Efficient and transparent workflow (bookkeeping)
• Geologically informed CAD (agility, data integration, surface definition, coordinate projections, …)
• Meshing
• Discretely / continuously varying material properties
• Solver

Meshing
• Respecting the geology
• Resolution that intelligently varies according to physics
• Time-dependence
 ❖ geometric compatibility
 ❖ non-stationary resolution
• Partitioning of mesh for parallel implementation
Summary Challenges (II)

Rheology

- Visco-elasto-plastic in volume
- Rate-state friction on fault
- Non-planar faults
- Poroelasticity
- Range of time-scales suggests need to switch between solvers (seismic, short-term, long-term) with obvious issues:
 - When to switch?
 - Mesh to mesh errors
 - Load balancing

Model Parameter Fitting (small to medium models)

- Linear: Use of FEM for Green’s functions (3D structure)
- Nonlinear: Monte Carlo simulations on parallel machines
 - Structure code to save “state” to minimize overhead