Outline

- General numerical modeling tips
- Mesh generation
- Running PyLith
General Numerical Modeling Tips
Start simple and progressively add complexity and increase resolution

- **Start in 2-D, if possible, and then go to 3-D**
 - Much smaller problems \Rightarrow much faster turnaround
 - Experiment with meshing, boundary conditions, solvers, etc
 - Keep in mind how physics differs from 3-D

- **Start with coarse resolution and then increase resolution**
 - Much smaller problems \Rightarrow much faster turnaround
 - Experiment with meshing, boundary conditions, solvers, etc.
 - Increase resolution until solution resolves features of interest
 - Resolution will depend on spatial scales in BC, initial conditions, deformation, and geologic structure
 - Is geometry of domain important? At what resolution?
 - Displacement field is integral of strains/stresses
 - Resolving stresses/strains requires fine resolution simulations

- **Use your intuition and analogous solutions to check your results!**
Mesh Generation Tips

There is no silver bullet in finite-element mesh generation

- Hex/Quad versus Tet/Tri
 - Hex/Quad are slightly more accurate and faster
 - Tet/Tri easily handle complex geometry
 - Easy to vary discretization size with Tet, Tri, and Quad cells
 - There is no easy answer
 For a given accuracy, a finer resolution Tet mesh that varies the discretization size in a more optimal way might run faster than a Hex mesh

- Check and double-check your mesh
 - Were there any errors when running the mesher?
 - Do all of the nodesets and blocks look correct?
 - Check mesh quality (aspect ratio should be close to 1)

- CUBIT
 - Name objects and use APREPRO or Python for robust scripts
 - Number of points in spline curves/surfaces has huge affect on mesh generation runtime
PyLith Tips

- Read the PyLith User Manual
- Do not ignore error messages and warnings!
- Use an example/benchmark as a starting point
- Quasi-static simulations
 - Start with a static simulation and then add time dependence
 - Check that the solution converges at every time step
- Dynamic simulations
 - Start with a static simulation
 - Shortest wavelength seismic waves control cell size
- CIG Short-Term Crustal Dynamics mailing list
cig-short@geodynamics.org
- Short-Term Crustal Dynamics wiki (under construction)
- CIG bug tracking system
 http://www.geodynamics.org/roundup
PyLith Debugging Tools

- `pylithinfo [--verbose] [PyLith args]`
 Dumps all parameters with their current values to text file

- **Command line arguments**
 - `--help`
 - `--help-components`
 - `--help-properties`
 - `--petsc.start_inDebugger (run in xterm)`
 - `--nodes=N` (to run on N processors on local machine)

- **Journal info flags** turn on writing progress/inf
 `[pylithapp.journal.info]`
 `timedependent = 1`
 - Turns on/off info for each type of component independently
 - Examples turn on writing lots of info to stdout using journal flags