Mantle Convection: Current Status and Future Challenges

Shijie Zhong

Department of Physics
University of Colorado at Boulder

Geo-Math Workshop, Santa Fe, 2008
Outline

1) **Introduction.**
 - What is mantle convection and why it is interesting/important.

2) **Current Status.**
 - Numerical methods & codes.
 - Example problems.

3) **Unique challenges.**
 - Multi-scale physics and non-linear and highly variable rheology.
 - Ongoing and future developments
What is mantle convection?

- **Objectives:** Understand the long-term heat and mass *transfer* and structure *formation* in the mantle and their *implications* for surface geological, geochemical and geophysical observables and for evolution of the Earth and other planets (terrestrial planets and icy satellites).

- **Physical basis:** Treat the mantle as viscous flow. Conservation of *MASS, ENERGY,* and *MOMENTUM + VISCOUS* rheological equation.
The Mantle – The Earth’s “Engine”

To remove radiogenic heating & primordial heating
The Mantle – The Earth’s “Engine”
A Simple Picture of Mantle Convection: Boundary Layers

Montelli et al. [2004]

van der Hilst [1995]
More seismic images of mantle convection

Grand, van der Hilst, & Widiyantoro [1997]

van der Hilst et al. [1992; 1997], Grand [1994], and early models by Dziewonski’s group, Masters’ group, and Romanowicz’s group.
Compositionally Distinct Mantle Reservoirs

A lot of geochemical evidences.

Masters et al. [2000].

Kellogg et al. [1999].

Ni et al. [2002], Ni & Helmberger [2003], Wen et al. [2001]

Important implications for the cooling of the core and geodynamo!
Back in time or out into the space …
Governing Equations (a simplified form)

Mass conservation:
\[\nabla \cdot \mathbf{u} = 0, \]

Momentum conservation:
\[-\nabla p + \nabla \cdot [\eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] - \delta \rho_0 g e_r = 0, \]

Energy conservation:
\[\rho_0 C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = k \nabla^2 T + \rho_0 H, \]

Equation of state:
\[\delta \rho = -\rho_0 \alpha (T - T_0) + \Delta \rho C, \]

Composition conservation:
\[\frac{\partial \mathbf{C}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{C} = 0, \]
Outline

1) Introduction.
 ➢ What is mantle convection and why it is interesting/important.

2) Current Status.
 ➢ Numerical methods & codes.
 ➢ Example problems.

3) Unique challenges.
 ➢ Multi-scale physics and non-linear and highly variable rheology.
 ➢ Ongoing and future developments
Various Methods

1) *Spectral methods* [Glatzmaier et al., 1990; Zhang & Christensen, 1993; Zhang & Yuen, 1995].

2) *Finite volume methods* [Ratcliff et al., 1997; Harder & Hansen, 2005; Tackley, 2008].

3) *Finite elements* [Baumgardner, 1985; King et al., 1990; Moresi & Gurnis, 1996; Zhong et al., 2000].
Some General Features in CitcomS

Stokes flow solver: Uzawa algorithm with two level Cartesian code Citcom iterations [Ramage and Wathen, 1994].

Grid: First divide a spherical shell into 12 caps, and then further divide each cap into elements with roughly uniform size. Each cap has the same number of elements. All the equations are explicitly written in spherical geometry and then coded up in stiffness matrix, force, pressure per element.

Zhong, Zuber, Moresi & Gurnis [2000]
Geometric Multigrid for the Inner Loop Solver in the Uzawa
CitcomS’ Parallel Efficiency

<table>
<thead>
<tr>
<th>Number of cores</th>
<th>total time (sec)</th>
<th>iterations</th>
<th>time per v-iteration (sec)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12(1x1x1)</td>
<td>69.8</td>
<td>112(118)</td>
<td>0.59</td>
<td>100</td>
</tr>
<tr>
<td>24(1x1x2)</td>
<td>64.1</td>
<td>95(103)</td>
<td>0.62</td>
<td>95</td>
</tr>
<tr>
<td>48(2x2x1)</td>
<td>53.7</td>
<td>73(78)</td>
<td>0.69</td>
<td>86</td>
</tr>
<tr>
<td>96(2x2x2)</td>
<td>53.9</td>
<td>74(79)</td>
<td>0.68</td>
<td>87</td>
</tr>
<tr>
<td>192(4x4x1)</td>
<td>47.2</td>
<td>55(63)</td>
<td>0.75</td>
<td>79</td>
</tr>
<tr>
<td>384(4x4x2)</td>
<td>46.8</td>
<td>55(58)</td>
<td>0.81</td>
<td>73</td>
</tr>
<tr>
<td>768(4x4x4)</td>
<td>52.4</td>
<td>58(61)</td>
<td>0.86</td>
<td>69</td>
</tr>
<tr>
<td>1536(8x8x2)</td>
<td>58.2</td>
<td>60(70)</td>
<td>0.83</td>
<td>71</td>
</tr>
<tr>
<td>3072(8x8x8)</td>
<td>59.1</td>
<td>54(57)</td>
<td>1.04</td>
<td>57</td>
</tr>
</tbody>
</table>

Zhong et al. [2008, G^3, in press]
CitcomS’ Parallel Efficiency on BlueGen (only conj-grad)

Provided by Scott King
More seismic images of mantle convection

Kellogg et al. [1999].

Grand, van der Hilst, & Widiyantoro [1997]
Example 1: Structure Formation [Zhong et al., 2007]

\[\eta = \eta_r \exp[E(0.5-T)] \]
Effects of a supercontinent on mantle structure

Add a supercontinent
Time evolution of mantle structure
Mantle Convection with Distinct Mantle Reservoirs

McNamara and Zhong [2005]
Example: Modeling the evolution of Farallon Subduction

Tan et al. [2002]
Example: Time evolution of mantle structure and continents

Gurnis [1988]

Phillips & Bunge [2007]
Outline

1) Introduction.
 - What is mantle convection and why it is interesting/important.

2) Current Status.
 - Numerical methods & codes.
 - Example problems.

3) Unique challenges.
 - Multi-scale physics and non-linear and highly variable rheology.
 - Ongoing and future developments
Multi-scale (from 10^0 km to 10^4 km) Physics

1) Plate margins and faults:
 $\sim 1 - 10^2$ km.

2) Upwelling and downwellings:
 $\sim 10^2$ km.

3) Chemical entrainment:
 $\sim 1 - 10^2$ km.

4) Plate scales:
 $\sim 10^3 - 10^4$ km.

Van Keken et al., 1997
Nonlinear and Highly Variable Rheology

1) Faulting and Plastic deformation: nonlinear

2) Highly temperature-dependent viscosity for silicate mantle (up to 3 orders of magnitude variations in plumes and downwellings).
Ongoing and Future Developments

• Better treatment of multi-scale processes (both physics and numerics).
 i) Lithospheric plates and plate boundaries.
 ii) Melting.
 iii) Thermo-chemical convection and entrainment.

• Adaptive mesh refinement (AMR) [Davies & Davies, 2008 – a 2D study; Bangerth’s deal-II].

• Efficient AMR on ~60K cores [Burstedde et al., 2008 – a collaborative effort by UT-Austin, Caltech, & UC-Boulder]
A new code: Rhea (octree-based AMR & massively parallel; local resolution to 1.5 km!)

Burstede et al. [2008]
Rhea’s Parallel Efficiency (fixed problem sizes)
Applying octree-based AMR to 2-D thermo-chemical convection

Leng & Zhong [2008 Fall AGU]