Problems in solid Earth deformation: crust and upper mantle

Yuri Fialko

S. Barbot
J. Pearse
Y. Hamiel

Institute of Geophysics and Planetary Physics
Scripps Institution of Oceanography
University of California San Diego

CIG, Sep. 16, 2008
Overview:

• Data-driven models
• Quest for “realistic” constitutive relationships for lithosphere, including upper (brittle) crust, lower crust, and upper mantle
• Data require material heterogeneity, non-linear rheologies, localization
 – models need to be sufficiently flexible to resolve multiple spatial and temporal scales
 – sufficient flexibility/efficiency in generating many realizations for inverse modeling
• Are FEM an ultimate answer?
\(\varepsilon(\sigma) \)?
\[\varepsilon(t) = F(\sigma, E, t, D, \ldots) \]
Calico fault

seismic tomography
Time-dependent deformation following earthquakes: Common suspects

• Localized slip on or below the seismic rupture ("afterslip")
• Visco-elastic relaxation (lower crust/upper mantle; various stress-strain relationships)
• Poro-elastic rebound (incapable of large horizontal displacements; mostly vertical deformation)
• ...or a combination of the above
\[\sigma_{ij} = 2G\epsilon_{ij} + \left(K - \frac{2G}{3} \right) \delta_{ij}\epsilon_{kk} - \alpha\delta_{ij} p \]

\[\frac{k}{\alpha\eta_f} \nabla^2 p = \frac{\partial}{\partial t} \left(\epsilon_{kk} + \frac{\alpha}{K_u - K} p \right) \]
Landers rupture
Stack of ERS-1/2 data
1992-1999
39 interferograms
Post-seismic deformation due to the M7.3 Landers earthquake
"Thin viscous sheet vs Fault-block"

"Jelly Sandwich vs Crème Brule"

Savage and Burford, 1970
Thatcher, 1983
Elsasser, 1969
Savage and Prescott, 1978
$V = 4 \text{ cm/yr}$

t = 200 yrs

$D = 8 \text{ m}$
\varepsilon = A \sigma^{3.5}
Thermo-mechanical coupling

\[\dot{\varepsilon} = C \sigma^n \exp \left(- \frac{Q}{RT} \right) \]

\[T \propto \dot{\varepsilon} \sigma \]

Yuen et al., 1978; Fleitout and Frodivaux, 1980; Turcotte and Schubert, 2002
Post-Landers CGPS data

- Rapid initial transient followed by a more gradual decay

- Difficult to fit assuming exponential dependence (not consistent with linear Maxwell viscoelastic behavior)

- Possible explanations:

 Bi- (or multi-) viscous rheology

 Power-law rheology

 Rate-and-state friction (or some other form of non-linear localized creep)
Equivalence between dislocations and body force couples (point-source solution)

Potency Tensor (Eigenstrain)
\[\varepsilon^i(x,y) = \frac{1}{2}(\hat{n} \otimes s + s \otimes \hat{n}) \delta(x - y) \]

Moment Density Tensor
\[m(x,y) = C : \varepsilon^i = C : s \otimes \hat{n} \delta(x - y) \]

Equivalent Body Forces
\[f(x,y) = -\nabla \cdot m = -\nabla \cdot (C : \varepsilon^i) \]

Equivalent Body Forces Are Linear Combination of 6 Double Couples
Finite Fault Source

Potency Tensor (Eigenstrain)

$$\epsilon^i(x) = \int_\Sigma \epsilon^i(x,y) \, dy$$

Moment Density Tensor

$$m(x) = \int_\Sigma C : \epsilon^i(x,y) \, dy$$

Example for Uniform Rectangular Fault

$$\epsilon^i(x) = \frac{1}{2} (\hat{e}_1 \otimes \hat{e}_2 + \hat{e}_2 \otimes \hat{e}_1) \, \Pi \left(\frac{x_1 - y_1}{L} \right) \delta(x_2 - y_2) \, \Pi \left(\frac{x_3 - y_3}{W} \right)$$

$$f(x) = -2\mu \, \nabla \cdot \epsilon^i = -\mu \left[\Pi \left(\frac{x_1 - y_1}{L} \right) \frac{\partial}{\partial x_2} \delta(x_2 - y_2) \, \Pi \left(\frac{x_3 - y_3}{W} \right) \right]$$

Eigenstrain characterizes:
- slip system (tensor part)
- location
- dimension

analytic expression for equivalent body forces allows:
- numerical sampling & processing
- analytic Fourier transform
- continuum representation of a discontinuous field
Greens’ Function in Fourier Domain

Navier’s Equation in Space Domain

\[\nabla \cdot (C : \nabla \otimes u) + f = 0 \]

or, for isotropic elasticity

\[(\lambda + \mu) \nabla \cdot u + \mu \nabla^2 u + f = 0 \]

solution is

\[u = \int_\Omega G(x,x_0) \cdot f(x_0) \, dV \]

Navier’s Equation in Fourier Domain

\[k \cdot (C : k \otimes u) = f/4\pi \]

or

\[(\lambda + \mu) k \otimes k \cdot u + \mu k \cdot k \otimes u = f/4\pi \]

or simply, with full space elastic Greens’ function

\[G^{-1}(k;\lambda,\mu) \cdot u(k) = f(k) \]

Boussinesq’s & Cerruti’s Problems: Elastic Deformation for Surface Traction

\[t_3 (k,x_3 = 0) \]
\[t_1 (k,x_3 = 0) \]
\[t_2 (k,x_3 = 0) \]

arbitrary distribution of surface traction.

\[x_1 \]
\[x_2 \]
\[x_3 \]

\[u = \begin{pmatrix} -2B_1\beta^2 + \alpha \omega_1 (B_1 \omega_1 + B_2 \omega_2)(1 + \beta x_3) + \alpha i \omega_1 \beta B_3 (1 - \alpha^{-1} + \beta x_3) \\ -2B_2\beta^2 + \alpha \omega_2 (B_1 \omega_1 + B_2 \omega_2)(1 + \beta x_3) + \alpha i \omega_2 \beta B_3 (1 - \alpha^{-1} + \beta x_3) \\ \alpha \beta^2 \left(i (B_1 \omega_1 + B_2 \omega_2) x_3 - B_3 (\alpha^{-1} + \beta x_3) \right) \end{pmatrix} e^{-\beta x_3} \]

Use Boussinesq and Cerruti’s solution to remove stress at the surface.
Benchmark

case of strike-slip fault, comparison with Okada [1992] and Wang [2002]:
• less than 5% error wrt Okada
• comparable with Wang
• larger error in the near field (due to discontinuity approximation)

Numerical code implements strike-slip and dip-slip fault and opening (or closing) cracks of arbitrary orientation.
Examples

The Fourier domain method is an attractive alternative to FEM in a number of applications:
- 3-D static deformation
- nonlinear 3-D viscoelasticity
- rate-and-state fault creep
- poroelasticity
- ...

A number of mathematical issues that arise from this formulation (optimal choice of an initial “homogenized” model, convergence, existence, stability analysis, errors, etc)
User Interface Example

./static <<EOF
grid dimension (sx1,sx2,sx3)
128 128 128
sampling (dx1,dx2,dx3), beta
0.05 0.05 0.05 0.3
origin position (x0,y0)
0 0
observation plane depth
0
output directory
output
elastic moduli (lambda,mu)
1 1
observation points
1
1 GPS1 0.5 0.1 0
shear dislocations
1
index slip x1 x2 x3 length width strike dip rake
 1 1 -0.5 0 0 1 1 0 90 0
tensile cracks
0
EOF

simple interface produces output in:
• prescribed points (GPS)
• map view txt file (x1,x2,u1,u2,u3)
• Generic Mapping Tools (GMT)

code is implemented in Fortran90
and uses DFT fourt

above example runs in 10s on a low-end laptop