You are here: Home / Citations / Browse the list of available citations

Citations

Search Citations
Citations
Oliva, A., Pinard, F., Tromey, T., (2011), "Nemesis v1.0.2 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Oliva, A., Pinard, F., Tromey, T., (2009), "Nemesis v1.0.1 [software]", : (DOI: NoDOI). Cited by:
Oliva, A., Pinard, F., Tromey, T., (2007), "Nemesis v1.0 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2016), "Pythia v0.8.1.17 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2013), "Pythia v0.8.1.16 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2012), "Pythia v0.8.1.14 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2012), "Pythia v0.8.1.15 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2011), "Pythia v0.8.1.12 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2011), "Pythia v0.8.1.13 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2009), "Pythia v0.8.1.8 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2009), "Pythia v0.8.1.9 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2008), "Pythia v0.8.1.7 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Aivazis, M., (2006), "Pythia v0.8 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Armendariz, L., Kientz, S., (2007), "CIGMA v0.9 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Armendariz, L., Kientz, S., Sunil, A., Mount, D., (2009), "CIGMA v1.0.0 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Armendariz, L., Kientz, S., (2008), "Cigma User Manual", Computational Infrastructure of Geodynamics, Pasadena, CA: . Cited by:
Strand, L., Bothner, P., Oliva, A., Tan, E., (2009), "Exchanger v1.0.1 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Strand, L., Bothner, P., Oliva, A., Tan, E., (2007), "Exchanger v1.0.0 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
Buffett, B., Matsui, H., (2019), "Equatorially trapped waves in Earth's core", Geophysical Journal International, 218, 2: pg: 1210--1225, (DOI: 10.1093/gji/ggz233). Cited by:
Calkins, M. A., Orvedahl, R. J., Featherstone, N. A., (2021), "Large-scale balances and asymptotic scaling behaviour in spherical dynamos", Geophysical Journal International, 227, 2: pg: 1228--1245, (DOI: 10.1093/gji/ggab274). Cited by:
Driscoll, P. E., Wilson, C., (2018), "Paleomagnetic Biases Inferred From Numerical Dynamos and the Search for Geodynamo Evolution", Frontiers in Earth Science, 6: pg: 113, (DOI: 10.3389/feart.2018.00113). Cited by:
Featherstone, N. A., Hindman, B. W., (2016), "The Emergence Of Solar Supergranulation As A Natural Consequence Of Rotationally Constrained Interior Convection", The Astrophysical Journal, 830, 1: pg: L15, (DOI: 10.3847/2041-8205/830/1/L15). Cited by:
Featherstone, N. A., Hindman, B. W., (2016), "The Spectral Amplitude Of Stellar Convection And Its Scaling In The High-Rayleigh-Number Regime", The Astrophysical Journal, 818, 1: pg: 32, (DOI: 10.3847/0004-637X/818/1/32). Cited by:
Karak, B. B., Miesch, M., Bekki, Y., (2018), "Consequences of high effective Prandtl number on solar differential rotation and convective velocity", Physics of Fluids, 30, 4: pg: 046602, (DOI: 10.1063/1.5022034). Cited by:
Miquel, B., Xie, J-H, Featherstone, N., Julien, K., Knobloch, E., (2018), "Equatorially trapped convection in a rapidly rotating shallow shell", Physical Review Fluids, 3, 5: (DOI: 10.1103/PhysRevFluids.3.053801). Cited by:
O'Mara, B., Miesch, M. S., Featherstone, N. A., Augustson, K. C., (2016), "Velocity amplitudes in global convection simulations: The role of the Prandtl number and near-surface driving", Advances in Space Research, 58, 8: pg: 1475--1489, (DOI: 10.1016/j.asr.2016.03.038). Cited by:
Orvedahl, R. J., (2021), "Numerical Simulations of Convection and Convection-Driven Dynamos in Spherical Shells", ProQuest Dissertations and Theses: University of Colorado at Boulder, . Cited by:
Orvedahl, R. J., Calkins, M. A., Featherstone, N. A., Hindman, B. W., (2018), "Prandtl-number Effects in High-Rayleigh-number Spherical Convection", The Astrophysical Journal, 856, 1: pg: 13, (DOI: 10.3847/1538-4357/aaaeb5). Cited by:
Orvedahl, R. J., Featherstone, N. A., Calkins, M. A., (2021), "Large-scale magnetic field saturation and the Elsasser number in rotating spherical dynamo models", Monthly Notices of the Royal Astronomical Society: Letters, 507, 1: pg: 67, (DOI: 10.1093/mnrasl/slab097). Cited by:
Liu, L., Olson, P., (2009), "Geomagnetic dipole moment collapse by convective mixing in the core", Geophysical Research Letters, 36, 10: pg: L10305, (DOI: 10.1029/2009GL038130). Cited by:
Olson, P., Deguen, R., (2012), "Eccentricity of the geomagnetic dipole caused by lopsided inner core growth", Nature Geoscience, 5, 8: pg: 565--569, (DOI: 10.1038/ngeo1506). Cited by:
Olson, P., Deguen, R., Hinnov, L. A., Zhong, S., (2013), "Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic", Physics of the Earth and Planetary Interiors, 214: pg: 87--103, (DOI: 10.1016/j.pepi.2012.10.003). Cited by:
Olson, P., Driscoll, P., Amit, H., (2009), "Dipole collapse and reversal precursors in a numerical dynamo", Physics of the Earth and Planetary Interiors, 173, 1-2: pg: 121--140, (DOI: 10.1016/j.pepi.2008.11.010). Cited by:
Ellis, S., Williams, C., Ristau, J., Reyners, M., Eberhart-Phillips, D., Wallace, L. M., (2016), "Calculating regional stresses for northern Canterbury: the effect of the 2010 Darfield earthquake", New Zealand Journal of Geology and Geophysics, Taylor & Francis, 59, 1: pg: 202--212, (DOI: 10.1080/00288306.2015.1123740). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Hamling, I. J., Williams, C. A., Hreinsdóttir, S., (2016), "Depressurization of a hydrothermal system following the August and November 2012 Te Maari eruptions of Tongariro, New Zealand", Geophysical Research Letters, 43, 1: pg: 168--175, (DOI: 10.1002/2015GL067264). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Power, W., Wallace, L. M., Mueller, C., Henrys, S., Clark, K., Fry, B., Wang, X., Williams, C., (2016), "Understanding the potential for tsunami generated by earthquakes on the southern Hikurangi subduction interface", New Zealand Journal of Geology and Geophysics, Taylor & Francis, 59, 1: pg: 70--85, (DOI: 10.1080/00288306.2015.1127825). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Mashino, Izumi, Murakami, Motohiko, Miyajima, Nobuyoshi, Petitgirard, Sylvain, (2020), "Experimental evidence for silica-enriched Earth’s lower mantle with ferrous iron dominant bridgmanite", Proceedings of the National Academy of Sciences, : (DOI: 10.1073/pnas.1917096117). Cited by:
Lv, Mingda, Liu, Jiachao, Greenberg, Eran, Prakapenka, Vitali B, Dorfman, Susannah M, (2020), "Thermal equation of state of post-aragonite CaCO3-Pmmn", American Mineralogist, 105, 9: pg: 1365--1374, (DOI: 10.2138/am-2020-7279). Cited by:
Creasy, Neala, Girard, Jennifer, Eckert Jr, James O, Lee, Kanani K M, (2020), "The Role of Redox on Bridgmanite Crystal Chemistry and Calcium Speciation in the Lower Mantle", Journal of Geophysical Research: Solid Earth, n/a, n/a: pg: e2020JB020783--e2020JB020783, (DOI: 10.1029/2020JB020783). Cited by:
Myhill, R., (2018), "The elastic solid solution model for minerals at high pressures and temperatures", Contributions to Mineralogy and Petrology, 173, 2: (DOI: 10.1007/s00410-017-1436-z). Cited by:
O'Neill, C., Lowman, Julian, Wasiliev, Jonathon, (2020), "The effect of galactic chemical evolution on terrestrial exoplanet composition and tectonics", Icarus, 352: pg: 114025--114025, (DOI: 10.1016/j.icarus.2020.114025). Cited by:
Shim, Sang Heon, Grocholski, Brent, Ye, Yu, Alp, E. Ercan, Xu, Shenzhen, Morgan, Dane, Meng, Yue, Prakapenka, Vitali B., (2017), "Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions", Proceedings of the National Academy of Sciences of the United States of America, 114, 25: pg: 6468--6473, (DOI: 10.1073/pnas.1614036114). Cited by:
Irving, Jessica C.E., Cottaar, Sanne, Lekic, Vedran, (2018), "Seismically determined elastic parameters for Earth’s outer core", Science Advances, 4, 6: pg: eaar2538--eaar2538, (DOI: 10.1126/sciadv.aar2538). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Thomson, A. R., Crichton, W. A., Brodholt, J. P., Wood, I. G., Siersch, N. C., Muir, J. M.R., Dobson, D. P., Hunt, S. A., (2019), "Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle", Nature, 572, 7771: pg: 643--647, (DOI: 10.1038/s41586-019-1483-x). Cited by:
Schaefer, Laura, B. Jacobsen, Stein, Remo, John L., Petaev, M. I., Sasselov, Dimitar D., (2017), "Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths", The Astrophysical Journal, 835, 2: pg: 234--234, (DOI: 10.3847/1538-4357/835/2/234). Cited by:
Saxena, Arushi, (2020), "Investigating Intraplate Seismicity in the Central and Eastern US: Linking Observations and Numerical Models", : The University of Memphis, ProQuest Dissertations Publishing, . Cited by:
BibTex | EndNote|Resources cited:[1][2][3]
Wang, Fei, Barklage, Mitchell, Lou, Xiaoting, Lee, Suzan, Bina, Craig R., Jacobsen, Steven D., (2018), "HyMaTZ}: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition {Zone", Geochemistry, Geophysics, Geosystems, 19, 8: pg: 2308--2324, (DOI: 10.1029/2018GC007464). Cited by:
Myhill, R., Frost, D. J., Novella, D., (2017), "Hydrous melting and partitioning in and above the mantle transition zone: Insights from water-rich MgO–SiO2–H2O experiments", Geochimica et Cosmochimica Acta, 200: pg: 408--421, (DOI: 10.1016/j.gca.2016.05.027). Cited by:
Das, Pratik Kr, Mohn, Chris E., Brodholt, John P., Trønnes, Reidar G., (2020), "High-pressure silica phase transitions: Implications for deep mantle dynamics and silica crystallization in the protocore", American Mineralogist, 105, 7: pg: 1014--1020, (DOI: 10.2138/am-2020-7299). Cited by:
Zeff, G., Williams, Q., (2019), "Fractional Crystallization of Martian Magma Oceans and Formation of a Thermochemical Boundary Layer at the Base of the Mantle", Geophysical Research Letters, 46, 20: pg: 10997--11007, (DOI: 10.1029/2019GL084810). Cited by:
Export Multiple Citations

Check the citations that you would like to have exported.

|
Reference Type
Author Geography
Author Affiliation