You are here: Home / Citations / Browse the list of available citations

Citations

Search Citations
Citations
Godinho, L., Amado Mendes, P., Tadeu, A., Cadena-Isaza, A., Smerzini, C., Sanchez-Sesma, F. J., Madec, R., Komatitsch, D., (2009), "Numerical Simulation of Ground Rotations along 2D Topographical Profiles under the Incidence of Elastic Plane Waves", Bulletin of the Seismological Society of America, 99, 2b: pg: 1147--1161, (DOI: 10.1785/0120080096). Cited by:
Kim, D., Keranen, K. M., Abers, G. A., Brown, L. D., (2018), "Enhanced resolution of the subducting plate interface in Central Alaska from autocorrelation of local earthquake coda", Journal of Geophysical Research: Solid Earth, 124, 2: pg: 1583--1600, (DOI: 10.1029/2018JB016167). Cited by:
Koene, E. F. M., Robertsson, J. O. A., Broggini, F., Andersson, F., (2017), "Eliminating time dispersion from seismic wave modelling", Geophysical Journal International, 213, 1: pg: 169--180, (DOI: 10.1093/gji/ggx563). Cited by:
Komatitsch, D., Barnes, C., Tromp, J., (2000), "Simulation of anisotropic wave propagation based upon a spectral element method", Geophysics, 65, 4: pg: 1251--1260, (DOI: 10.1190/1.1444816). Cited by:
Komatitsch, D., Barnes, C., Tromp, J., (2000), "Wave propagation near a fluid-solid interface: A spectral-element approach", Geophysics, 65, 2: pg: 623--631, (DOI: 10.1190/1.1444758). Cited by:
Komatitsch, D., Martin, R., Tromp, J., Taylor, M. A., Wingate, B. A., (2001), "Wave Propagation In 2-D Elastic Media Using A Spectral Element Method With Triangles And Quadrangles", Journal of Computational Acoustics, 09, 02: pg: 703--718, (DOI: 10.1142/S0218396X01000796). Cited by:
Komatitsch, D., Tromp, J., (2003), "A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation", Geophysical Journal International, 154, 1: pg: 146--153, (DOI: 10.1046/j.1365-246X.2003.01950.x). Cited by:
Komatitsch, D., Tromp, J., (1999), "Introduction to the spectral element method for three-dimensional seismic wave propagation", Geophysical Journal International, 139, 3: pg: 806--822, (DOI: 10.1046/j.1365-246x.1999.00967.x). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Komatitsch, D., Vilotte, J-P, Cristini, P., Labarta, J., Le Goff, N., Le Loher, P., Liu, Q., Martin, R., Matzen, R., Morency, C., Peter, D., Tape, C., Tromp, J., Xie, Z., (2012), "SPECFEM2D v7.0.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Vilotte, J-P, Vai, R., Castillo-Covarrubias, J. M., Sánchez-Sesma, F. J., (1999), "The spectral element method for elastic wave equations--application to 2-D and 3-D seismic problems", International Journal for Numerical Methods in Engineering, 45, 9: pg: 1139--1164, (DOI: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Lahivaara, T., Dudley Ward, N. F., Huttunen, T., Rawlinson, Z., Kaipio, J. P., (2015), "Estimation of aquifer dimensions from passive seismic signals in the presence of material and source uncertainties", Geophysical Journal International, 200, 3: pg: 1662--1675, (DOI: 10.1093/gji/ggu494). Cited by:
Lähivaara, T., Ward, N. F. D., Huttunen, T., Koponen, J., Kaipio, J. P., (2014), "Estimation of aquifer dimensions from passive seismic signals with approximate wave propagation models", Inverse Problems, 30, 1: pg: 015003, (DOI: 10.1088/0266-5611/30/1/015003). Cited by:
Lott, M., Roux, P., Garambois, S., Guéguen, P., Colombi, A., (2019), "Evidence of metamaterial physics at the geophysics scale: the METAFORET experiment", Geophysical Journal International, 220, 2: pg: 1330--1339, (DOI: 10.1093/gji/ggz528). Cited by:
Luo, Y., Zhu, H., Nissen-Meyer, T., Morency, C., Tromp, J., (2009), "Seismic modeling and imaging based upon spectral-element and adjoint methods", The Leading Edge, 28, 5: pg: 568--574, (DOI: 10.1190/1.3124932). Cited by:
Mahvelati, S., Coe, J. T., Nyquist, J. E., (2021), "Characterizing the Effects of Survey Parameters on Experimental Love Wave Multichannel Analysis of Surface Wave (MASW) Data", Pure and Applied Geophysics, : (DOI: 10.1007/s00024-021-02790-3). Cited by:
Martire, L., Martin, R., Brissaud, Q., Garcia, R. F., (2021), "SPECFEM2D-DG, an open source software modeling mechanical waves in coupled solid-fluid systems: the Linearised navier-stokes approach", Geophysical Journal International, : (DOI: 10.1093/gji/ggab308). Cited by:
Morency, C., (2019), "Electromagnetic Wave Propagation based upon Spectral-Element Methodology in Dispersive and Attenuating Media", Geophysical Journal International, 22, 2: pg: 951--966, (DOI: 10.1093/gji/ggz510). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Morency, C., Luo, Y., Tromp, J., (2009), "Finite-frequency kernels for wave propagation in porous media based upon adjoint methods", Geophysical Journal International, 179, 2: pg: 1148--1168, (DOI: 10.1111/j.1365-246X.2009.04332.x). Cited by:
Morency, C., Tromp, J., (2008), "Spectral-element simulations of wave propagation in porous media", Geophysical Journal International, 175, 1: pg: 301--345, (DOI: 10.1111/j.1365-246X.2008.03907.x). Cited by:
N.J. Mancinelli, K. M. Fischer, (2017), "The spatial sensitivity of Sp converted waves—Scattered wave kernels and their applications to receiver-function migration and inversion", Geophysical Journal International, 212, 3: pg: 1722--1735, (DOI: 10.1093/gji/ggx506). Cited by:
Nguyen, L. T., Nestorovic, T., (2016), "Unscented hybrid simulated annealing for fast inversion of tunnel seismic waves", Computer Methods in Applied Mechanics and Engineering, 301: pg: 281--299, (DOI: 10.1016/j.cma.2015.12.004). Cited by:
Örsvuran, R., Bozdag, E., Modrak, R., Lei, W., Ruan, Y., (2019), "Double-difference measurements in global full-waveform inversions", Geophysical Journal International, 220, 1: pg: 661--680, (DOI: 10.1093/gji/ggz444). Cited by:
Paap, B., Kraaijpoel, D., Wassing, B., Wees, J-D, (2019), "Simulation of induced seismic ground motions using coupled geomechanical and seismic wave propagation models", Geophysical Journal International, 220, 2: pg: 1284--1299, (DOI: 10.1093/gji/ggz506). Cited by:
Sieminski, A., Paulssen, H., Trampert, J., Tromp, J., (2008), "Finite-Frequency SKS Splitting: Measurement and Sensitivity Kernels", Bulletin of the Seismological Society of America, 98, 4: pg: 1797--1810, (DOI: 10.1785/0120070297). Cited by:
Tape, C., Liu, Q., Tromp, J., (2007), "Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves", Geophysical Journal International, 168, 3: pg: 1105--1129, (DOI: 10.1111/j.1365-246X.2006.03191.x). Cited by:
Tong, P., Chen, C-W, Komatitsch, D., Basini, P., Liu, Q., (2014), "High-resolution seismic array imaging based on an SEM-FK hybrid method", Geophysical Journal International, 197, 1: pg: 369--395, (DOI: 10.1093/gji/ggt508). Cited by:
Traore, O. I., Favretto-Cristini, N., Cristini, P., Pantera, L., Viguier-Pla, S., (2018), "Impact of the Test Device on Acoustic Emission Signals From Nuclear Safety Experiments: Contribution of Wave Propagation Modeling to Signal Processing", IEEE Transactions on Nuclear Science, 65, 9: pg: 2479--2489, (DOI: 10.1109/TNS.2018.2844291). Cited by:
Tromp, J., Luo, Y., Hanasoge, S., Peter, D., (2010), "Noise cross-correlation sensitivity kernels: Noise cross-correlation sensitivity kernels", Geophysical Journal International, 183, 2: pg: 791--819, (DOI: 10.1111/j.1365-246X.2010.04721.x). Cited by:
Tromp, J., Tape, C., Liu, Q., (2005), "Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels", Geophysical Journal International, 160, 1: pg: 195--216, (DOI: 10.1111/j.1365-246X.2004.02453.x). Cited by:
Vai, R., Castillo-Covarrubias, J. M., Sánchez-Sesma, F. J., Komatitsch, D., Vilotte, J-P, (1999), "Elastic wave propagation in an irregularly layered medium", Soil Dynamics and Earthquake Engineering, 18, 1: pg: 11--18, (DOI: 10.1016/S0267-7261(98)00027-X). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Wijk, K., Komatitsch, D., Scales, J. A., Tromp, J., (2004), "Analysis of strong scattering at the micro-scale", The Journal of the Acoustical Society of America, 115, 3: pg: 1006, (DOI: 10.1121/1.1647480). Cited by:
Wang, X., Cai, M., (2017), "A Method to Estimate Shear Quality Factor of Hard Rocks", Pure and Applied Geophysics, 174, 7: pg: 2689--2703, (DOI: 10.1007/s00024-017-1577-z). Cited by:
Wang, X., Cai, M., (2017), "Numerical modeling of seismic wave propagation and ground motion in underground mines", Tunnelling and Underground Space Technology, 68: pg: 211--230, (DOI: 10.1016/j.tust.2017.05.019). Cited by:
Xie, Y., Rychert, C. A., Harmon, N., Liu, Q., Gajewski, D., (2021), "On-the-Fly Full Hessian Kernel Calculations Based upon Seismic-Wave Simulations", Seismological Research Letters, : (DOI: 10.1785/0220200410). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Yuan, Y. O., Simons, F. J., (2014), "Multiscale adjoint waveform-difference tomography using wavelets", Geophysics, 79, 3: pg: Wa79-Wa95, (DOI: 10.1190/geo2013-0383.1). Cited by:
Zheng, L., Zhao, Q., Milkereit, B., Grasselli, G., Liu, Q., (2014), "Spectral-element simulations of elastic wave propagation in exploration and geotechnical applications", Earthquake Science, 27, 2: pg: 179--187, (DOI: 10.1007/s11589-014-0069-9). Cited by:
Zhu, H., Luo, Y., Nissen-Meyer, T., Morency, C., Tromp, J., (2009), "Elastic imaging and time-lapse migration based on adjoint methods", Geophysics, 74, 6: pg: Wca167-Wca177, (DOI: 10.1190/1.3261747). Cited by:
Goddeke, D., Komatitsch, D., Moller, M., Kindratenko, V. (2014), "Numerical Computations with GPUs", Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Problems, Springer International Publishing, Cham: pg: 183--206, 978-3-319-06548-9, (DOI: 10.1007/978-3-319-06548-9_9). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Hanasoge, S. M., Komatitsch, D., Gizon, L., (2010), "An absorbing boundary formulation for the stratified, linearized, ideal MHD equations based on an unsplit, convolutional perfectly matched layer", Astronomy & Astrophysics, 522: pg: A87, (DOI: 10.1051/0004-6361/201014345). Cited by:
Komatitsch, D., Carcione, J. M., Cavallini, F., Favretto-Cristini, N., (2011), "Elastic surface waves in crystals -- Part 2: Cross-check of two full-wave numerical modeling methods", Ultrasonics, 51, 8: pg: 878--889, (DOI: 10.1016/j.ultras.2011.05.001). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Komatitsch, D., Martin, R., (2012), "SEISMIC_CPML v1.1.4 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2011), "SEISMIC_CPML v1.1.3 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2010), "SEISMIC_CPML v1.1.2 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.0.2 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.1.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.1.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2007), "An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation", Geophysics, 72, 5: pg: Sm155-Sm167, (DOI: 10.1190/1.2757586). Cited by:
Martin, R., Komatitsch, D., (2009), "An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation", Geophysical Journal International, 179, 1: pg: 333--344, (DOI: 10.1111/j.1365-246X.2009.04278.x). Cited by:
Martin, R., Komatitsch, D., Ezziani, A., (2008), "An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media", Geophysics, 73, 4: pg: T51-T61, (DOI: 10.1190/1.2939484). Cited by:
Martin, R., Komatitsch, D., Gedney, S. D., Bruthiaux, E., (2010), "A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML)", CMES: Computer Modeling In Engineering & Sciences, 56, 1: pg: 17--42, (DOI: 10.3970/cmes.2010.056.017). Cited by:
Export Multiple Citations

Check the citations that you would like to have exported.

|
Reference Type
Author Geography
Author Affiliation