You are here: Home / Citations / Browse the list of available citations

Citations

Search Citations
Citations
Wang, X., Cai, M., (2017), "Numerical modeling of seismic wave propagation and ground motion in underground mines", Tunnelling and Underground Space Technology, 68: pg: 211--230, (DOI: 10.1016/j.tust.2017.05.019). Cited by:
Xie, Y., Rychert, C. A., Harmon, N., Liu, Q., Gajewski, D., (2021), "On-the-Fly Full Hessian Kernel Calculations Based upon Seismic-Wave Simulations", Seismological Research Letters, : (DOI: 10.1785/0220200410). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Yuan, Y. O., Simons, F. J., (2014), "Multiscale adjoint waveform-difference tomography using wavelets", Geophysics, 79, 3: pg: Wa79-Wa95, (DOI: 10.1190/geo2013-0383.1). Cited by:
Zheng, L., Zhao, Q., Milkereit, B., Grasselli, G., Liu, Q., (2014), "Spectral-element simulations of elastic wave propagation in exploration and geotechnical applications", Earthquake Science, 27, 2: pg: 179--187, (DOI: 10.1007/s11589-014-0069-9). Cited by:
Zhu, H., Luo, Y., Nissen-Meyer, T., Morency, C., Tromp, J., (2009), "Elastic imaging and time-lapse migration based on adjoint methods", Geophysics, 74, 6: pg: Wca167-Wca177, (DOI: 10.1190/1.3261747). Cited by:
Goddeke, D., Komatitsch, D., Moller, M., Kindratenko, V. (2014), "Numerical Computations with GPUs", Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Problems, Springer International Publishing, Cham: pg: 183--206, 978-3-319-06548-9, (DOI: 10.1007/978-3-319-06548-9_9). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Hanasoge, S. M., Komatitsch, D., Gizon, L., (2010), "An absorbing boundary formulation for the stratified, linearized, ideal MHD equations based on an unsplit, convolutional perfectly matched layer", Astronomy & Astrophysics, 522: pg: A87, (DOI: 10.1051/0004-6361/201014345). Cited by:
Komatitsch, D., Carcione, J. M., Cavallini, F., Favretto-Cristini, N., (2011), "Elastic surface waves in crystals -- Part 2: Cross-check of two full-wave numerical modeling methods", Ultrasonics, 51, 8: pg: 878--889, (DOI: 10.1016/j.ultras.2011.05.001). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Komatitsch, D., Martin, R., (2012), "SEISMIC_CPML v1.1.4 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2011), "SEISMIC_CPML v1.1.3 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2010), "SEISMIC_CPML v1.1.2 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.0.2 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.1.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.1.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Komatitsch, D., Martin, R., (2007), "An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation", Geophysics, 72, 5: pg: Sm155-Sm167, (DOI: 10.1190/1.2757586). Cited by:
Martin, R., Komatitsch, D., (2009), "An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation", Geophysical Journal International, 179, 1: pg: 333--344, (DOI: 10.1111/j.1365-246X.2009.04278.x). Cited by:
Martin, R., Komatitsch, D., Ezziani, A., (2008), "An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media", Geophysics, 73, 4: pg: T51-T61, (DOI: 10.1190/1.2939484). Cited by:
Martin, R., Komatitsch, D., Gedney, S. D., Bruthiaux, E., (2010), "A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML)", CMES: Computer Modeling In Engineering & Sciences, 56, 1: pg: 17--42, (DOI: 10.3970/cmes.2010.056.017). Cited by:
Nagaso, Masaru, (2018), "Study of ultrasound wave propagation in a heterogeneous fluid medium for the monitoring of an operating sodium-based nuclear reactor", AMU-CNRS-ECM, Marseille, France: . Cited by:
BibTex | EndNote|Resources cited:[1][2]
Michéa, D., Komatitsch, D., (2010), "Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards: Accelerating a wave propagation code using GPUs", Geophysical Journal International, 182, 1: pg: 389--402, (DOI: 10.1111/j.1365-246X.2010.04616.x). Cited by:
Monteiller, V., Chevrot, S., Komatitsch, D., Fuji, N., (2013), "A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model", Geophysical Journal International, 192, 1: pg: 230--247, (DOI: 10.1093/gji/ggs006). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Xie, Z., Komatitsch, D., Martin, R., Matzen, R., (2014), "Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML", Geophysical Journal International, 198, 3: pg: 1714--1747, (DOI: 10.1093/gji/ggu219). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Komatitsch, D., Vilotte, J-P, (1998), "The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures", Bulletin of the Seismological Society of America, 88, 2: pg: 368--392, (DOI: 10.1785/BSSA0880020368). Cited by:
Tromp, J., Komatitsch, D., (2013), "SPECFEM1D v1.0.4 [software]", : . Cited by:
Tromp, J., Komatitsch, D., (2011), "SPECFEM1D v1.0.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Jiang, W., Xi, C., Wang, W., Ruan, Y., (2021), "Time Window Selection of Seismic Signals for Waveform Inversion Based on Deep Learning", IEEE Transactions on Geoscience and Remote Sensing, : pg: 1--10, (DOI: 10.1109/TGRS.2021.3076531). Cited by:
Kim, Y. H., Liu, Q., Tromp, J., (2011), "Adjoint centroid-moment tensor inversions: Adjoint centroid-moment tensor inversions", Geophysical Journal International, 186, 1: pg: 264--278, (DOI: 10.1111/j.1365-246X.2011.05027.x). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Lee, E-J, Chen, P., (2013), "Automating seismic waveform analysis for full 3-D waveform inversions", Geophysical Journal International, 194, 1: pg: 572--589, (DOI: 10.1093/gji/ggt124). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Liu, Y., Niu, F., Chen, M., Yang, W., (2017), "3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography", Earth and Planetary Science Letters, 461: pg: 20--29, (DOI: 10.1016/j.epsl.2016.12.029). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Lloyd, A. J., Wiens, D. A., Zhu, H., Tromp, J., Nyblade, A. A., Aster, R. C., Hansen, S. E., Dalziel, I. W. D., Wilson, T. J., Ivins, E. R., O'Donnell, J. P., (2019), "Seismic Structure of the Antarctic Upper Mantle Based on Adjoint Tomography", Journal of Geophysical Research: Solid Earth, : (DOI: 10.1029/2019JB017823). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Luo, Y., Tromp, J., Denel, B., Calandra, H., (2013), "3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods", Geophysics, 78, 4: pg: S193-S202, (DOI: 10.1190/geo2012-0462.1). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Maggi, A., Tape, C., Chao, D., Chen, M., Hjorleifsdottir, V., Liu, Q., Tromp, J., (2012), "Flexwin v1.0.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Maggi, A., Tape, C., Chao, D., Chen, M., Hjorleifsdottir, V., Liu, Q., Tromp, J., (2009), "Flexwin v1.0.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
Maggi, A., Tape, C., Chen, M., Chao, D., Tromp, J., (2009), "An automated time-window selection algorithm for seismic tomography", Geophysical Journal International, 178, 1: pg: 257--281, (DOI: 10.1111/j.1365-246X.2009.04099.x). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Schuberth, B. S. A., Zaroli, C., Nolet, G., (2015), "Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals", Geophysical Journal International, 203, 3: pg: 2099--2118, (DOI: 10.1093/gji/ggv389). Cited by:
Scognamiglio, L., Magnoni, F., Tinti, E., Casarotti, E., (2016), "Uncertainty estimations for moment tensor inversions: the issue of the 2012 may 20 Emilia earthquake", Geophysical Journal International, 206: pg: 792--806, (DOI: 10.1093/gji/ggw173). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Smith, W. S., Zeng, Z., Carette, J., (2018), "Seismology software: state of the practice", Journal of Seismology, Springer Nature, 22, 3: pg: 755--788, (DOI: 10.1007/s10950-018-9731-3). Cited by:
Tape, C., Liu, Q., Maggi, A., Tromp, J., (2010), "Seismic tomography of the southern California crust based on spectral-element and adjoint methods", Geophysical Journal International, 180, 1: pg: 433--462, (DOI: 10.1111/j.1365-246X.2009.04429.x). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Xiao, Z., Fuji, N., Iidaka, T., Gao, Y., Sun, X., Liu, Q., (2020), "Seismic Structure Beneath the Tibetan Plateau From Iterative Finite-Frequency Tomography Based on ChinArray: New Insights Into the Indo-Asian Collision", Journal of Geophysical Research: Solid Earth, 125, 2: (DOI: 10.1029/2019JB018344). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Yuan, Y. O., Bozdag, E., Ciardelli, C., Gao, F., Simons, F. J., (2020), "The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography", Geophysical Journal International, 221, 2: pg: 1145--1164, (DOI: 10.1093/gji/ggaa063). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Zhu, H., Bozdag, E., Duffy, T. S., Tromp, J., (2013), "Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle", Earth and Planetary Science Letters, 381: pg: 1--11, (DOI: 10.1016/j.epsl.2013.08.030). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Zhu, H., Bozdag, E., Peter, D., Tromp, J., (2012), "Structure of the European upper mantle revealed by adjoint tomography", Nature Geoscience, 5, 7: pg: 493--498, (DOI: 10.1038/ngeo1501). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Zhu, H., Bozdag, E., Tromp, J., (2015), "Seismic structure of the European upper mantle based on adjoint tomography", Geophysical Journal International, 201, 1: pg: 18--52, (DOI: 10.1093/gji/ggu492). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Zhu, H., Komatitsch, D., Tromp, J., (2017), "Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray", Geophysical Journal International, 211, 1: pg: 349--377, (DOI: 10.1093/gji/ggx305). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Zhu, H., Stern, R. J., Yang, J., (2020), "Seismic evidence for subduction-induced mantle flows underneath Middle America", Nature Communications, 11, 1: (DOI: 10.1038/s41467-020-15492-6). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Zhu, H., Tromp, J., (2013), "Mapping Tectonic Deformation in the Crust and Upper Mantle Beneath Europe and the North Atlantic Ocean", Science, 341, 6148: pg: 871--875, (DOI: 10.1126/science.1241335). Cited by:
BibTex | EndNote|Resources cited:[1][2]
Artru, J., Lognonné, P., Blanc, E., (2001), "Normal modes modelling of post-seismic ionospheric oscillations", Geophysical Research Letters, 28, 4: pg: 697--700, (DOI: 10.1029/2000GL000085). Cited by:
Attanayake, J., Ferreira, A. M. G., Berbellini, A., Morelli, A., (2017), "Crustal structure beneath Portugal from teleseismic Rayleigh Wave Ellipticity", Tectonophysics, 712-713: pg: 344--361, (DOI: 10.1016/j.tecto.2017.06.001). Cited by:
Babikoff, J. C., (2019), "Long period Rayleigh wave phase velocity tomography using USArray", Geochemistry, Geophysics, Geosystems, 20, 4: pg: 1990--2006, (DOI: 10.1029/2018GC008073). Cited by:
Beghein, C., Yuan, K., Schmerr, N., Xing, Z., (2014), "Changes in Seismic Anisotropy Shed Light on the Nature of the Gutenberg Discontinuity", Science, 343, 6176: pg: 1237--1240, (DOI: 10.1126/science.1246724). Cited by:
Export Multiple Citations

Check the citations that you would like to have exported.

|
Reference Type
Author Geography
Author Affiliation