|
|
Aivazis, M., (2012), "Pythia v0.8.1.15 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Aivazis, M., (2011), "Pythia v0.8.1.12 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Aivazis, M., (2011), "Pythia v0.8.1.13 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Aivazis, M., (2009), "Pythia v0.8.1.8 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Aivazis, M., (2009), "Pythia v0.8.1.9 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Aivazis, M., (2008), "Pythia v0.8.1.7 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Aivazis, M., (2006), "Pythia v0.8 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Armendariz, L., Kientz, S., (2007), "CIGMA v0.9 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Armendariz, L., Kientz, S., Sunil, A., Mount, D., (2009), "CIGMA v1.0.0 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Armendariz, L., Kientz, S., (2008), "Cigma User Manual", Computational Infrastructure of Geodynamics, Pasadena, CA: . Cited by:
|
|
|
Strand, L., Bothner, P., Oliva, A., Tan, E., (2009), "Exchanger v1.0.1 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Strand, L., Bothner, P., Oliva, A., Tan, E., (2007), "Exchanger v1.0.0 [software]", Computational Infrastructure for Geodynamics: (DOI: NoDOI). Cited by:
|
|
|
Calkins, M. A., Orvedahl, R. J., Featherstone, N. A., (2021), "Large-scale balances and asymptotic scaling behaviour in spherical dynamos", Geophysical Journal International, 227, 2: pg: 1228--1245, (DOI: 10.1093/gji/ggab274). Cited by:
|
|
|
Driscoll, P. E., Wilson, C., (2018), "Paleomagnetic Biases Inferred From Numerical Dynamos and the Search for Geodynamo Evolution", Frontiers in Earth Science, 6: pg: 113, (DOI: 10.3389/feart.2018.00113). Cited by:
|
|
|
Featherstone, N. A., Hindman, B. W., (2016), "The Emergence Of Solar Supergranulation As A Natural Consequence Of Rotationally Constrained Interior Convection", The Astrophysical Journal, 830, 1: pg: L15, (DOI: 10.3847/2041-8205/830/1/L15). Cited by:
|
|
|
Featherstone, N. A., Hindman, B. W., (2016), "The Spectral Amplitude Of Stellar Convection And Its Scaling In The High-Rayleigh-Number Regime", The Astrophysical Journal, 818, 1: pg: 32, (DOI: 10.3847/0004-637X/818/1/32). Cited by:
|
|
|
Karak, B. B., Miesch, M., Bekki, Y., (2018), "Consequences of high effective Prandtl number on solar differential rotation and convective velocity", Physics of Fluids, 30, 4: pg: 046602, (DOI: 10.1063/1.5022034). Cited by:
|
|
|
Miquel, B., Xie, J-H, Featherstone, N., Julien, K., Knobloch, E., (2018), "Equatorially trapped convection in a rapidly rotating shallow shell", Physical Review Fluids, 3, 5: (DOI: 10.1103/PhysRevFluids.3.053801). Cited by:
|
|
|
O'Mara, B., Miesch, M. S., Featherstone, N. A., Augustson, K. C., (2016), "Velocity amplitudes in global convection simulations: The role of the Prandtl number and near-surface driving", Advances in Space Research, 58, 8: pg: 1475--1489, (DOI: 10.1016/j.asr.2016.03.038). Cited by:
|
|
|
Orvedahl, R. J., (2021), "Numerical Simulations of Convection and Convection-Driven Dynamos in Spherical Shells", ProQuest Dissertations and Theses: University of Colorado at Boulder, . Cited by:
|
|
|
Orvedahl, R. J., Calkins, M. A., Featherstone, N. A., Hindman, B. W., (2018), "Prandtl-number Effects in High-Rayleigh-number Spherical Convection", The Astrophysical Journal, 856, 1: pg: 13, (DOI: 10.3847/1538-4357/aaaeb5). Cited by:
|
|
|
Orvedahl, R. J., Featherstone, N. A., Calkins, M. A., (2021), "Large-scale magnetic field saturation and the Elsasser number in rotating spherical dynamo models", Monthly Notices of the Royal Astronomical Society: Letters, 507, 1: pg: 67, (DOI: 10.1093/mnrasl/slab097). Cited by:
|
|
|
Liu, L., Olson, P., (2009), "Geomagnetic dipole moment collapse by convective mixing in the core", Geophysical Research Letters, 36, 10: pg: L10305, (DOI: 10.1029/2009GL038130). Cited by:
|
|
|
Olson, P., Deguen, R., (2012), "Eccentricity of the geomagnetic dipole caused by lopsided inner core growth", Nature Geoscience, 5, 8: pg: 565--569, (DOI: 10.1038/ngeo1506). Cited by:
|
|
|
Olson, P., Deguen, R., Hinnov, L. A., Zhong, S., (2013), "Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic", Physics of the Earth and Planetary Interiors, 214: pg: 87--103, (DOI: 10.1016/j.pepi.2012.10.003). Cited by:
|
|
|
Olson, P., Driscoll, P., Amit, H., (2009), "Dipole collapse and reversal precursors in a numerical dynamo", Physics of the Earth and Planetary Interiors, 173, 1-2: pg: 121--140, (DOI: 10.1016/j.pepi.2008.11.010). Cited by:
|
|
|
Ellis, S., Williams, C., Ristau, J., Reyners, M., Eberhart-Phillips, D., Wallace, L. M., (2016), "Calculating regional stresses for northern Canterbury: the effect of the 2010 Darfield earthquake", New Zealand Journal of Geology and Geophysics, Taylor & Francis, 59, 1: pg: 202--212, (DOI: 10.1080/00288306.2015.1123740). Cited by:
|
|
|
Hamling, I. J., Williams, C. A., Hreinsdóttir, S., (2016), "Depressurization of a hydrothermal system following the August and November 2012 Te Maari eruptions of Tongariro, New Zealand", Geophysical Research Letters, 43, 1: pg: 168--175, (DOI: 10.1002/2015GL067264). Cited by:
|
|
|
Power, W., Wallace, L. M., Mueller, C., Henrys, S., Clark, K., Fry, B., Wang, X., Williams, C., (2016), "Understanding the potential for tsunami generated by earthquakes on the southern Hikurangi subduction interface", New Zealand Journal of Geology and Geophysics, Taylor & Francis, 59, 1: pg: 70--85, (DOI: 10.1080/00288306.2015.1127825). Cited by:
|
|
|
Mashino, Izumi, Murakami, Motohiko, Miyajima, Nobuyoshi, Petitgirard, Sylvain, (2020), "Experimental evidence for silica-enriched Earth’s lower mantle with ferrous iron dominant bridgmanite", Proceedings of the National Academy of Sciences, : (DOI: 10.1073/pnas.1917096117). Cited by:
|
|
|
Lv, Mingda, Liu, Jiachao, Greenberg, Eran, Prakapenka, Vitali B, Dorfman, Susannah M, (2020), "Thermal equation of state of post-aragonite CaCO3-Pmmn", American Mineralogist, 105, 9: pg: 1365--1374, (DOI: 10.2138/am-2020-7279). Cited by:
|
|
|
Creasy, Neala, Girard, Jennifer, Eckert Jr, James O, Lee, Kanani K M, (2020), "The Role of Redox on Bridgmanite Crystal Chemistry and Calcium Speciation in the Lower Mantle", Journal of Geophysical Research: Solid Earth, n/a, n/a: pg: e2020JB020783--e2020JB020783, (DOI: 10.1029/2020JB020783). Cited by:
|
|
|
Myhill, R., (2018), "The elastic solid solution model for minerals at high pressures and temperatures", Contributions to Mineralogy and Petrology, 173, 2: (DOI: 10.1007/s00410-017-1436-z). Cited by:
|
|
|
O'Neill, C., Lowman, Julian, Wasiliev, Jonathon, (2020), "The effect of galactic chemical evolution on terrestrial exoplanet composition and tectonics", Icarus, 352: pg: 114025--114025, (DOI: 10.1016/j.icarus.2020.114025). Cited by:
|
|
|
Shim, Sang Heon, Grocholski, Brent, Ye, Yu, Alp, E. Ercan, Xu, Shenzhen, Morgan, Dane, Meng, Yue, Prakapenka, Vitali B., (2017), "Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions", Proceedings of the National Academy of Sciences of the United States of America, 114, 25: pg: 6468--6473, (DOI: 10.1073/pnas.1614036114). Cited by:
|
|
|
Irving, Jessica C.E., Cottaar, Sanne, Lekic, Vedran, (2018), "Seismically determined elastic parameters for Earth’s outer core", Science Advances, 4, 6: pg: eaar2538--eaar2538, (DOI: 10.1126/sciadv.aar2538). Cited by:
|
|
|
Thomson, A. R., Crichton, W. A., Brodholt, J. P., Wood, I. G., Siersch, N. C., Muir, J. M.R., Dobson, D. P., Hunt, S. A., (2019), "Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle", Nature, 572, 7771: pg: 643--647, (DOI: 10.1038/s41586-019-1483-x). Cited by:
|
|
|
Schaefer, Laura, B. Jacobsen, Stein, Remo, John L., Petaev, M. I., Sasselov, Dimitar D., (2017), "Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths", The Astrophysical Journal, 835, 2: pg: 234--234, (DOI: 10.3847/1538-4357/835/2/234). Cited by:
|
|
|
Saxena, Arushi, (2020), "Investigating Intraplate Seismicity in the Central and Eastern US: Linking Observations and Numerical Models", : The University of Memphis, ProQuest Dissertations Publishing, . Cited by:
|
|
|
Wang, Fei, Barklage, Mitchell, Lou, Xiaoting, Lee, Suzan, Bina, Craig R., Jacobsen, Steven D., (2018), "HyMaTZ}: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition {Zone", Geochemistry, Geophysics, Geosystems, 19, 8: pg: 2308--2324, (DOI: 10.1029/2018GC007464). Cited by:
|
|
|
Myhill, R., Frost, D. J., Novella, D., (2017), "Hydrous melting and partitioning in and above the mantle transition zone: Insights from water-rich MgO–SiO2–H2O experiments", Geochimica et Cosmochimica Acta, 200: pg: 408--421, (DOI: 10.1016/j.gca.2016.05.027). Cited by:
|
|
|
Das, Pratik Kr, Mohn, Chris E., Brodholt, John P., Trønnes, Reidar G., (2020), "High-pressure silica phase transitions: Implications for deep mantle dynamics and silica crystallization in the protocore", American Mineralogist, 105, 7: pg: 1014--1020, (DOI: 10.2138/am-2020-7299). Cited by:
|
|
|
Zeff, G., Williams, Q., (2019), "Fractional Crystallization of Martian Magma Oceans and Formation of a Thermochemical Boundary Layer at the Base of the Mantle", Geophysical Research Letters, 46, 20: pg: 10997--11007, (DOI: 10.1029/2019GL084810). Cited by:
|
|
|
Wicks, June K., Smith, Raymond F., Fratanduono, Dayne E., Coppari, Federica, Kraus, Richard G., Newman, Matthew G., Ryan Rygg, J., Eggert, Jon H., Duffy, Thomas S., (2018), "Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions", Science Advances, 4, 4: pg: eaao5864--eaao5864, (DOI: 10.1126/sciadv.aao5864). Cited by:
|
|
|
Cottaar, Sanne, Heister, Timo, Rose, Ian, Unterborn, Cayman, (2014), "BurnMan: A lower mantle mineral physics toolkit", Geochemistry, Geophysics, Geosystems, 15, 4: pg: 1164--1179, (DOI: 10.1002/2013GC005122). Cited by:
|
|
|
Cottaar, Sanne, Heister, Timo, Myhill, Robert, Rose, Ian, Unterborn, Cayman, (2016), "BurnMan v0.9.0", Zenodo, : (DOI: 10.5281/ZENODO.546210). Cited by:
|
|
|
Heister, T, Unterborn, C, Rose, I, Cottaar, S, (2014), "Burn Man v0.7 [software]", : . Cited by:
|
|
|
O'Neill, Craig, (2021), "End-member Venusian core scenarios: Does Venus have an inner core?", Geophysical Research Letters, n/a, n/a: pg: e2021GL095499, (DOI: 10.1029/2021GL095499). Cited by:
|
|
|
Dannberg, J., Heister, T., (2016), "Compressible Magma/Mantle Dynamics: 3d, Adaptive Simulations in ASPECT", Geophysical Journal International, 207, 3: pg: 1343-1366, (DOI: 10.1093/gji/ggw329). Cited by:
|
|
|
Rose, I., Buffett, B., Heister, T., (2016), "Stability and accuracy of free surface time integration in viscous flows", Physics of the Earth and Planetary Interiors, 262: pg: 90-100, (DOI: 10.1016/j.pepi.2016.11.007). Cited by:
|