|
|
Yang, X., Luo, Y., Xu, H., Zhao, K., (2020), "Shear wave velocity and radial anisotropy structures beneath the central Pacific from surface wave analysis of OBS records", Earth and Planetary Science Letters, 534: pg: 116086, (DOI: 10.1016/j.epsl.2020.116086). Cited by:
|
|
|
Yildiz, S., Sabra, K., Dorman, L. R. M., Kuperman, W. A., (2013), "Using hydroacoustic stations as water column seismometers", Geophysical Research Letters, 40, 11: pg: 2573--2578, (DOI: 10.1002/grl.50371). Cited by:
|
|
|
Yuan, K., Beghein, C., (2014), "Three-dimensional variations in Love and Rayleigh wave azimuthal anisotropy for the upper 800 km of the mantle", Journal of Geophysical Research: Solid Earth, 119, 4: pg: 3232--3255, (DOI: 10.1002/2013JB010853). Cited by:
|
|
|
Yuan, K., Beghein, C., (2013), "Seismic anisotropy changes across upper mantle phase transitions", Earth and Planetary Science Letters, 374: pg: 132--144, (DOI: 10.1016/j.epsl.2013.05.031). Cited by:
|
|
|
Zábranová, E., Hanyk, L., Matyska, C., (2017), "Matrix Eigenvalue Method for Free-oscillations Modelling of Spherical Elastic Bodies", Geophysical Journal International, 211, 2: pg: 1254--1271, (DOI: 10.1093/gji/ggx353). Cited by:
|
|
|
Zábranová, E., Matyska, C., (2016), "Inversion of the moment-tensor Mrr components of the 2012 Sumatra strike-slip double earthquake using radial normal modes", Physics of the Earth and Planetary Interiors, 262: pg: 1--7, (DOI: 10.1016/j.pepi.2016.10.001). Cited by:
|
|
|
Zhang, S., Wang, R., Dahm, T., Zhou, S., Heimann, S., (2020), "Prompt elasto-gravity signals (PEGS) and their potential use in modern seismology", Earth and Planetary Science Letters, 536: pg: 116150, (DOI: 10.1016/j.epsl.2020.116150). Cited by:
|
|
|
Zhao, K., Luo, Y., Yang, Y., Yang, X., (2021), "High-resolution lithospheric structures of the Qinling-Dabie orogenic belt: Implications for deep subduction and delamination of continental lithosphere", Tectonophysics, 806: pg: 228799, . Cited by:
|
|
|
Zheng, Y., Hu, H., (2017), "Nonlinear Signal Comparison and High-Resolution Measurement of Surface-Wave Dispersion", Bulletin of the Seismological Society of America, Bulletin of the Seismological Society of America, 107, 3: pg: 1551--1556, (DOI: 10.1785/0120160242). Cited by:
|
|
|
Zheng, Y., Nimmo, F., Lay, T., (2015), "Seismological implications of a lithospheric low seismic velocity zone in Mars", Physics of the Earth and Planetary Interiors, 240: pg: 132--141, (DOI: 10.1016/j.pepi.2014.10.004). Cited by:
|
|
|
Chen, M., Niu, F., Liu, Q., Tromp, J., Zheng, X., (2015), "Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons", Journal of Geophysical Research: Solid Earth, 120, 3: pg: 1762--1786, (DOI: 10.1002/2014JB011638). Cited by:
|
|
|
Chow, B., Kaneko, Y., Tape, C., Modrak, R., Townend, J., (2020), "An automated workflow for adjoint tomography -- Waveform misfits and synthetic inversions for the North Island, New Zealand", Geophysical Journal International, : (DOI: 10.1093/gji/ggaa381). Cited by:
|
|
|
Dong, X., Yang, D., Niu, F., (2019), "Passive adjoint tomography of the crustal and upper mantle beneath eastern Tibet with a W2 norm misfit function", Geophysical Research Letters, 46, 22: pg: 12986--12995, (DOI: 10.1029/2019GL085515). Cited by:
|
|
|
Dong, X., Yang, D., Niu, F., Liu, S., Tong, P., (2021), "Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton", Scientific Reports, 11, 1: pg: 12523, (DOI: 10.1038/s41598-021-92048-8). Cited by:
|
|
|
Dong, X., Yang, D., Zhu, H., (2020), "Adjoint Tomography of the Lithospheric Structure beneath Northeastern Tibet", Seismological Research Letters, : (DOI: 10.1785/0220200135). Cited by:
|
|
|
Agius, M. R., Lebedev, S., (2017), "Complex, multi-layered azimuthal anisotropy beneath Tibet: Evidence for co-existing channel flow and pure-shear crustal thickening", Geophysical Journal International, 210, 3: pg: 1823--1844, (DOI: 10.1093/gji/ggx266). Cited by:
|
|
|
Agius, M. R., Lebedev, S., (2014), "Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust", Geophysical Journal International, 199, 3: pg: 1395--1415, (DOI: 10.1093/gji/ggu326). Cited by:
|
|
|
Agius, M. R., Lebedev, S., (2013), "Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface-wave dispersion: Tibetan, Indian Lithosphere Beneath Tibet", Geochemistry, Geophysics, Geosystems, 14, 10: pg: 4260--4281, (DOI: 10.1002/ggge.20274). Cited by:
|
|
|
Akbarashrafi, Fatemeh, (2020), "Resolvability of the 3D density structure of the Earths mantle using normal mode theory", Utrecht University, Netherlands: : 978-90-6266-571-6, . Cited by:
|
|
|
Altoe, I., Eeken, T., Goes, S., Foster, A., Darbyshire, F., (2020), "Thermo-compositional structure of the north-eastern Canadian Shield from Rayleigh wave dispersion analysis as a record of its tectonic history", Earth and Planetary Science Letters, 547: pg: 116465, . Cited by:
|
|
|
Huang, Quancheng, Schmerr, Nicholas C, Beghein, Caroline, Waszek, Lauren, Maguire, Ross R, (2022), "3-D synthetic modeling and observations of anisotropy effects on SS precursors: implications for mantle deformation in the transition zone", Geophysical Journal International, 229, 2: pg: 1212-1231, 01, (DOI: 10.1093/gji/ggab529). Cited by:
|
|
|
Sébastien Chevrot, Matthieu Sylvander, Antonio Villaseñor, Jordi Díaz, Laurent Stehly, Pierre Boué, Vadim Monteiller, Roland Martin, Maximilien Lehujeur, Stephen Beller, Jacques Brives, Adnand Bitri, Sylvain Calassou, Magali Collin, Mary Ford, Laurent Jolivet, Gianreto Manatschal, Emmanuel Masini, Frédéric Mouthereau and Olivier Vidal, (2022), "Passive imaging of collisional orogens: a review of a decade of geophysical studies in the Pyrénées", BSGF - Earth Sci. Bull., 193, 1: pg: 1, (DOI: 10.1051/bsgf/2021049). Cited by:
|
|
|
Zhang, Xubin, Xie, Zhinan, Liu, Qifang, (2021), "Comparison of 2D and 3D valley topographic effect based on spectral element simulation", 2021 7th International Conference on Hydraulic and Civil Engineering Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE SWIDR), : pg: 101-104, (DOI: 10.1109/ICHCESWIDR54323.2021.9656307). Cited by:
|
|
|
Wang, LiGang, Xie, Zhinan, Ma, Wanjun, Zhang, XvBin, (2021), "The implementation of Graves amp; Pitarka’s stochastic kinematic fault source model in SPECFEM3D", 2021 7th International Conference on Hydraulic and Civil Engineering Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE SWIDR), : pg: 43-47, (DOI: 10.1109/ICHCESWIDR54323.2021.9656305). Cited by:
|
|
|
Hong, Tae-Kyung, Lee, Junhyung, Park, Seongjun, Kim, Woohan, (2021), "Major influencing factors for the nucleation of the 15 November 2017 Mw 5.5 Pohang earthquake", Physics of the Earth and Planetary Interiors, : pg: 106833, (DOI: 10.1016/j.pepi.2021.106833). Cited by:
|
|
|
Pachhai, S., Li, M., Thorne, M. S., Dettmer, J., Tkalcic, H., (2021), "Internal structure of ultralow-velocity zones consistent with origin from a basal magma ocean", Nature Geoscience, : (DOI: 10.1038/s41561-021-00871-5). Cited by:
|
|
|
Kwack, JaeHyuk, Tramm, John, Bertoni, Colleen, Ghadar, Yasaman, Homerding, Brian, Rangel, Esteban, Knight, Christopher, Parker, Scott, (2021), "Evaluation of Performance Portability of Applications and Mini-Apps across AMD, Intel and NVIDIA GPUs", 2021 International Workshop on Performance, Portability and Productivity in HPC (P3HPC), : pg: 45-56, (DOI: 10.1109/P3HPC54578.2021.00008). Cited by:
|
|
|
Sangeetha, S., Raghukanth, S.T.G., (2022), "Broadband ground motion simulations for Northeast India", Soil Dynamics and Earthquake Engineering, 154: pg: 107120, (DOI: 10.1016/j.soildyn.2021.107120). Cited by:
|
|
|
Lee, Sungho, Saxena, Arushi, Song, Jung-Hun, Rhie, Junkee, Choi, Eunseo, (2021), "Contributions from lithospheric and upper-mantle heterogeneities to upper crustal seismicity in the Korean Peninsula", Geophysical Journal International, : 12, (DOI: 10.1093/gji/ggab527). Cited by:
|
|
|
Bishop, Jordan W., Fee, David, Modrak, Ryan, Tape, Carl, Kim, Keehoon, (2022), "Spectral Element Modeling of Acoustic to Seismic Coupling over Topography", Journal of Geophysical Research: Solid Earth, 127, 1: pg: e2021JB023142, (DOI: 10.1029/2021JB023142). Cited by:
|
|
|
Yao, Jie, (2021), "Constraints on Magma Ocean Crystallization in the Early Earth: Experiments, Thermodynamics and Ab initio simulations", Universität Bayreuth: . Cited by:
|
|
|
Lundin, E. R., Doré, A. G., Naliboff, J., Van Wijk, J., (2021), "Utilization of continental transforms in break-up: observations, models, and a potential link to magmatism", Geological Society, London, Special Publications, Geological Society of London, 524: (DOI: 10.1144/SP524-2021-119). Cited by:
|
|
|
Saha, Sumit, Reddy, K.S.K Karthik, Somala, Surendra Nadh, (2021), "Seismic assessment of steel frame subjected to simulated directivity earthquakes: The unilaterality of fault normal component at various rupture distances", Journal of Building Engineering, : pg: 103880, (DOI: 10.1016/j.jobe.2021.103880). Cited by:
|
|
|
Feng, Kewei, Huang, Duruo, Wang, Gang, Jin, Feng, Chen, Zhengwei, (2021), "Physics-based large-deformation analysis of coseismic landslides: A multiscale 3D SEM-MPM framework with application to the Hongshiyan landslide", Engineering Geology, : pg: 106487, (DOI: 10.1016/j.enggeo.2021.106487). Cited by:
|
|
|
Frazer, William D., Doran, Adrian K., Laske, Gabi, (2021), "Benchmarking Automated Rayleigh‐Wave Arrival Angle Measurements for USArray Seismograms", Seismological Research Letters, : 11, (DOI: 10.1785/0220210189). Cited by:
|
|
|
Lee, Jaeseok, Song, Jung‐Hun, Kim, Seongryong, Rhie, Junkee, Song, Seok Goo, (2021), "Three‐Dimensional Seismic‐Wave Propagation Simulations in the Southern Korean Peninsula Using Pseudodynamic Rupture Models", Bulletin of the Seismological Society of America, : 12, (DOI: 10.1785/0120210172). Cited by:
|
|
|
Lecoulant, Jean, Oliveira, Tiago C. A., Lin, Ying-Tsong, (2021), "Three-dimensional modeling of T-wave generation and propagation from a South Mid-Atlantic Ridge earthquake", The Journal of the Acoustical Society of America, 150, 5: pg: 3807-3824, (DOI: 10.1121/10.0007072). Cited by:
|
|
|
Sheibani, Mohamadreza, Wang, Yinhu, Ou, Ge, Marković, Nikola, (2022), "Efficient Structural Reconnaissance Surveying for Regional Postseismic Damage Inference with Optimal Inspection Scheduling", Journal of Engineering Mechanics, 148, 2: pg: 04021156, (DOI: 10.1061/(ASCE)EM.1943-7889.0002069). Cited by:
|
|
|
Spada, Giorgio, Melini, Daniele, (2021), "New estimates of ongoing sea level change and land movements caused by Glacial Isostatic Adjustment in the Mediterranean region", Geophysical Journal International, : 12, (DOI: 10.1093/gji/ggab508). Cited by:
|
|
|
Mendoza, L. P. O., Richter, A., Marderwald, E. R., Hormaechea, J. L., Connon, G., Scheinert, M., Dietrich, R., Perdomo, R. A., (2021), "Horizontal and vertical deformation rates linked to the Magallanes-Fagnano Fault, Tierra del Fuego: reconciling geological and geodetic observations by modeling the current seismic cycle", Tectonics, 41, 1: pg: e2021TC006801, (DOI: 10.1029/2021TC006801). Cited by:
|
|
|
Rodriguez Padilla, Alba M., Oskin, Michael E., Rockwell, Thomas K., Delusina, Irina, Singleton, Drake M., (2021), "Joint earthquake ruptures of the San Andreas and San Jacinto faults, California, USA", Geology, : 12, (DOI: 10.1130/G49415.1). Cited by:
|
|
|
Yao, Suli, Yang, Hongfeng, (2021), "Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault", Earth and Planetary Science Letters, : pg: 117296, (DOI: 10.1016/j.epsl.2021.117296). Cited by:
|
|
|
Dana, S., Jha, B., (2021), "Towards a poroelastodynamics framework for induced earthquakes: effect of pore pressure on fault mechanics", 20, 3: pg: 81--98, 1940-4352, (DOI: 10.1615/IntJMultCompEng.2021041646). Cited by:
|
|
|
Tkalčić, Hrvoje, Wang, Sheng, Phạm, Thanh-Son, (2022), "Shear Properties of Earth's Inner Core", Annual Review of Earth and Planetary Sciences, 50, 1: pg: 153-181, (DOI: 10.1146/annurev-earth-071521-063942). Cited by:
|
|
|
Magni, Valentina, Naliboff, John, Prada, Manel, Gaina, Carmen, (2021), "Ridge Jumps and Mantle Exhumation in Back-Arc Basins", Geosciences, 11, 11: (DOI: 10.3390/geosciences11110475). Cited by:
|
|
|
Eckert, Eric, Scalise, Michelle, Louie, John N., Smith, Kenneth D., (2021), "Exploring Basin Amplification within the Reno Metropolitan Area in Northern Nevada Using a Magnitude 6.3 ShakeOut Scenario", Bulletin of the Seismological Society of America, : 10, (DOI: 10.1785/0120200309). Cited by:
|
|
|
Arndt, N. T., Coltice, N., Helmstaedt, H., Gregoire, M., (2009), "Origin of Archean subcontinental lithospheric mantle: Some petrological constraints", Lithos, 109, 1-2: pg: 61--71, (DOI: 10.1016/j.lithos.2008.10.019). Cited by:
|
|
|
Danis, C., O'Neill, C., Lackie, M. A., (2010), "Gunnedah Basin 3D architecture and upper crustal temperatures", Australian Journal of Earth Sciences, 57, 4: pg: 483--505, (DOI: 10.1080/08120099.2010.481353). Cited by:
|
|
|
Debaille, V., O'Neill, C., Brandon, A. D., Haenecour, P., Yin, Q-Z, Mattielli, N., Treiman, A. H., (2013), "Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks", Earth and Planetary Science Letters, 373: pg: 83--92, (DOI: 10.1016/j.epsl.2013.04.016). Cited by:
|
|
|
Dyksterhuis, S., Rey, P., Muller, R. D., Moresi, L., (2007), "Effects of initial weakness on rift architecture", Geological Society, London, Special Publications, 282, 1: pg: 443--455, (DOI: 10.1144/SP282.18). Cited by:
|