|
|
Huang, C., Leng, W., Wu, Z., (2020), "The continually stable subduction, iron-spin transition and the formation of LLSVPs from subducted oceanic crust", Journal of Geophysical Research: Solid Earth, : (DOI: 10.1029/2019JB018262). Cited by:
|
|
|
Huang, J., Davies, G. F., (2007), "Geochemical processing in a three-dimensional regional spherical shell model of mantle convection", Geochemistry, Geophysics, Geosystems, 8, 11: pg: Q11006, (DOI: 10.1029/2007GC001625). Cited by:
|
|
|
Jadamec, M. A., (2016), "Insights on Slab-driven Mantle Flow from Advances in Three-dimensional modelling", Journal of Geodynamics, 100: pg: 51--70, (DOI: 10.1016/j.jog.2016.07.004). Cited by:
|
|
|
Jadamec, M. A., Billen, M. I., (2012), "The role of rheology and slab shape on rapid mantle flow: Three-dimensional numerical models of the Alaska slab edge", Journal of Geophysical Research: Solid Earth, 117, B2: pg: B02304, (DOI: 10.1029/2011JB008563). Cited by:
|
|
|
Jadamec, M. A., Billen, M. I., (2010), "Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge", Nature, 465, 7296: pg: 338--341, (DOI: 10.1038/nature09053). Cited by:
|
|
|
Jadamec, M. A., Billen, M. I., Kreylos, O., (2012), "Three-dimensional Simulations of Geometrically Complex Subduction with Large Viscosity Variations", Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the Campus and Beyond, XSEDE '12, Acm, New York, NY, USA: pg: 31-1, (DOI: 10.1145/2335755.2335827). Cited by:
|
|
|
Jadamec, M. A., Billen, M. I., Roeske, S. M., (2013), "Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska", Earth and Planetary Science Letters, 376: pg: 29--42, (DOI: 10.1016/j.epsl.2013.06.009). Cited by:
|
|
|
Kaislaniemi, L., Hunen, J., Bouilhol, P., (2018), "Lithosphere destabilization by melt weakening and crust-mantle interactions: implications for generation of granite-migmatite belts", Tectonics, 37, 9: pg: 3102--3116, (DOI: 10.1029/2018TC005014). Cited by:
|
|
|
Leng, W., Zhong, S., (2009), "More constraints on internal heating rate of the Earth's mantle from plume observations", Geophysical Research Letters, 36, 2: pg: L02306, (DOI: 10.1029/2008GL036449). Cited by:
|
|
|
Li, M., Zhong, S., Olson, P., (2018), "Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation", Physics of the Earth and Planetary Interiors, 277: pg: 10--29, (DOI: 10.1016/j.pepi.2018.01.010). Cited by:
|
|
|
Long, X., Ballmer, M. D., Cordoba, A. M-C, Li, C-F, (2019), "Mantle melting and intraplate volcanism due to self-buoyant hydrous upwellings from the stagnant slab that are conveyed by small-scale convection", Geochemistry, Geophysics, Geosystems, 20, 11: pg: 4972--4997, (DOI: 10.1029/2019GC008591). Cited by:
|
|
|
Magni, V., (2019), "The effects of back-arc spreading on arc magmatism", Earth and Planetary Science Letters, 519: pg: 141--151, (DOI: 10.1016/j.epsl.2019.05.009). Cited by:
|
|
|
Magni, V., Allen, M. B., Hunen, J., Bouilhol, P., (2017), "Continental underplating after slab break-off", Earth and Planetary Science Letters, 474: pg: 59--67, (DOI: 10.1016/j.epsl.2017.06.017). Cited by:
|
|
|
Maunder, B., Hunen, J., Bouilhol, P., Magni, V., (2019), "Modeling Slab Temperature: A Reevaluation of the Thermal Parameter", Geochemistry, Geophysics, Geosystems, 20, 2: pg: 673-687, (DOI: 10.1029/2018GC007641). Cited by:
|
|
|
Maunder, B., Hunen, J., Magni, V., Bouilhol, P., (2016), "Relamination of mafic subducting crust throughout Earth's history", Earth and Planetary Science Letters, 449: pg: 206--216, (DOI: 10.1016/j.epsl.2016.05.042). Cited by:
|
|
|
Maunder, Benjamin, (2017), "The Role of the Dynamics of the Subducting Plate in Generating Arc Magmatism", Durham University, England: . Cited by:
|
|
|
Moresi, L., Zhong, S., Gurnis, M., (2006), "CitcomCU v1.0.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Motoki, M. H., Ballmer, M. D., (2015), "Intraplate volcanism due to convective instability of stagnant slabs in the mantle transition zone", Geochemistry, Geophysics, Geosystems, 16, 2: pg: 538--551, (DOI: 10.1002/2014GC005608). Cited by:
|
|
|
Obermaier, H., Billen, M. I., Hagen, H., Hering-Bertram, M., Hamann, B., (2011), "Visualizing Strain Anisotropy in Mantle Flow Fields", Computer Graphics Forum, 30, 8: pg: 2301--2313, (DOI: 10.1111/j.1467-8659.2011.02036.x). Cited by:
|
|
|
Schliffke, N., Hunen, J., Magni, V., Allen, M. B., (2019), "The Role of Crustal Buoyancy in the Generation and Emplacement of Magmatism During Continental Collision", Geochemistry, Geophysics, Geosystems, 20, 11: pg: 4693--4709, (DOI: 10.1029/2019GC008590). Cited by:
|
|
|
Sleep, N. H., (2008), "Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots", Geochemistry, Geophysics, Geosystems, 9, 8: pg: Q08005, (DOI: 10.1029/2008GC002090). Cited by:
|
|
|
Solomatov, V. S., (2012), "Localized subcritical convective cells in temperature-dependent viscosity fluids", Physics of the Earth and Planetary Interiors, 200-201: pg: 63--71, (DOI: 10.1016/j.pepi.2012.04.005). Cited by:
|
|
|
Taposeea, C. A., Armitage, J. J., Collier, J. S., (2016), "Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic", Tectonophysics, 716: pg: 4--20, (DOI: 10.1016/j.tecto.2016.06.026). Cited by:
|
|
|
Trubitsyn, V. P., (2012), "Rheology of the mantle and tectonics of the oceanic lithospheric plates", Izvestiya, Physics of the Solid Earth, 48, 6: pg: 467--485, (DOI: 10.1134/S1069351312060079). Cited by:
|
|
|
Trubitsyn, V. P., Evseev, A. N., Evseev, M. N., Kharybin, E. V., (2011), "Mantle plumes in the models of quasi-turbulent thermal convection", Izvestiya, Physics of the Solid Earth, 47, 12: pg: 1027--1033, (DOI: 10.1134/S106935131112010X). Cited by:
|
|
|
Zhong, S., (2006), "Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature", Journal of Geophysical Research, 111, B4: pg: B04409, (DOI: 10.1029/2005JB003972). Cited by:
|
|
|
Gu, T., Li, M., McCammon, C., Lee, K. K. M., (2016), "Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen", Nature Geoscience, 9, 9: pg: 723--727, (DOI: 10.1038/ngeo2772). Cited by:
|
|
|
Arrial, P-A, Flyer, N., Wright, G. B., Kellogg, L. H., (2014), "On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison", Geoscientific Model Development Discussions, 7, 2: pg: 2033--2064, (DOI: 10.5194/gmdd-7-2033-2014). Cited by:
|
|
|
Attreyee Ghosh, G. Thyagarajulu, (2017), "The Importance of Upper Mantle Heterogeneity in Generating the Indian Ocean Geoid Low", Geophysical Research Letters, 44: pg: 97079715, (DOI: 10.1002/2017GL075392). Cited by:
|
|
|
Ballmer, M. D., Schmerr, N. C., Nakagawa, T., Ritsema, J., (2015), "Compositional mantle layering revealed by slab stagnation at ~1000-km depth", Science Advances, 1, 11: pg: e1500815-e1500815, (DOI: 10.1126/sciadv.1500815). Cited by:
|
|
|
Becker, T., Schultepelkum, V., Blackman, D., Kellogg, J., O'Connell, R., (2006), "Mantle flow under the western United States from shear wave splitting", Earth and Planetary Science Letters, 247, 3-4: pg: 235--251, (DOI: 10.1016/j.epsl.2006.05.010). Cited by:
|
|
|
Becker, T. W., (2008), "Azimuthal seismic anisotropy constrains net rotation of the lithosphere", Geophysical Research Letters, 35, 5: pg: L05303, (DOI: 10.1029/2007GL032928). Cited by:
|
|
|
Becker, T. W., (2006), "On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces", Geophysical Journal International, 167, 2: pg: 943--957, (DOI: 10.1111/j.1365-246X.2006.03172.x). Cited by:
|
|
|
Becker, T. W., Faccenna, C., (2011), "Mantle conveyor beneath the Tethyan collisional belt", Earth and Planetary Science Letters, 310, 3-4: pg: 453--461, (DOI: 10.1016/j.epsl.2011.08.021). Cited by:
|
|
|
Becker, T. W., Faccenna, C., Lallemand, S.and Funiciello, F. (2009), "Subduction Zone Geodynamics", A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions, Springer Berlin Heidelberg, Berlin, Heidelberg: pg: 3--34, 978-3-540-87974-9, (DOI: 10.1007/978-3-540-87974-9_1). Cited by:
|
|
|
Becker, T. W., Kustowski, B., Ekstrom, G., (2008), "Radial seismic anisotropy as a constraint for upper mantle rheology", Earth and Planetary Science Letters, 267, 1-2: pg: 213--227, (DOI: 10.1016/j.epsl.2007.11.038). Cited by:
|
|
|
Billen, M. I., Jadamec, M., (2012), "Origin of localized fast mantle flow velocity in numerical models of subduction", Geochemistry, Geophysics, Geosystems, 13, 1: pg: Q01016, (DOI: 10.1029/2011GC003856). Cited by:
|
|
|
Bobrov, A. M., Baranov, A. A., (2019), "Thermochemical Mantle Convection with Drifting Deformable Continents: Main Features of Supercontinent Cycle", Pure and Applied Geophysics, 176: pg: 3545--3565, (DOI: 10.1007/s00024-019-02164-w). Cited by:
|
|
|
Bobrova, A. M., Baranov, A. A., (2016), "The mantle convection model with non-Newtonian rheology and phase transitions: The flow structure and stress fields", Izvestiya, Physics of the Solid Earth, 52, 1: pg: 129--143, (DOI: 10.1134/S1069351316010031). Cited by:
|
|
|
Boschi, L., Faccenna, C., Becker, T. W., (2010), "Mantle structure and dynamic topography in the Mediterranean Basin", Geophysical Research Letters, 37, 20: pg: L20303, (DOI: 10.1029/2010GL045001). Cited by:
|
|
|
Bower, D. J., Gurnis, M., Jackson, J. M., Sturhahn, W., (2009), "Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase", Geophysical Research Letters, 36, 10: pg: L10306, (DOI: 10.1029/2009GL037706). Cited by:
|
|
|
Bower, D. J., Gurnis, M., Seton, M., (2013), "Lower mantle structure from paleogeographically constrained dynamic Earth models", Geochemistry, Geophysics, Geosystems, 14, 1: pg: 44--63, (DOI: 10.1029/2012GC004267). Cited by:
|
|
|
Bower, D. J., Gurnis, M., Sun, D., (2013), "Dynamic origins of seismic wavespeed variation in", Physics of the Earth and Planetary Interiors, 214: pg: 74--86, (DOI: 10.1016/j.pepi.2012.10.004). Cited by:
|
|
|
Bower, D. J., Wicks, J. K., Gurnis, M., Jackson, J. M., (2011), "A geodynamic and mineral physics model of a solid-state ultralow-velocity zone", Earth and Planetary Science Letters, 303, 3-4: pg: 193--202, (DOI: 10.1016/j.epsl.2010.12.035). Cited by:
|
|
|
Bull, A. L., McNamara, A. K., Becker, T. W., Ritsema, J., (2010), "Global scale models of the mantle flow field predicted by synthetic tomography models", Physics of the Earth and Planetary Interiors, 182, 3-4: pg: 129--138, (DOI: 10.1016/j.pepi.2010.03.004). Cited by:
|
|
|
Burkett, E., Gurnis, M., (2013), "Stalled slab dynamics", Lithosphere, 5, 1: pg: 92--97, (DOI: 10.1130/L249.1). Cited by:
|
|
|
Chen, S., Zhang, H., Yuen, D. A., Zhang, S., Zhang, J., Shi, Y., (2008), "Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh", Visual Geosciences, 13, 1: pg: 97--104, (DOI: 10.1007/s10069-008-0012-0). Cited by:
|
|
|
Citron, R. I., Manga, M., Tan, E., (2018), "A hybrid origin of the Martian crustal dichotomy: Degree-1 convection antipodal to a giant impact", Earth and Planetary Science Letters, 491: pg: 58--66, (DOI: 10.1016/j.epsl.2018.03.031). Cited by:
|
|
|
Conrad, C. P., (2013), "The solid Earth's influence on sea level", Geological Society of America Bulletin, 125, 7-8: pg: 1027--1052, (DOI: 10.1130/B30764.1). Cited by:
|
|
|
Conrad, C. P., Behn, M. D., (2010), "Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy", Geochemistry, Geophysics, Geosystems, 11, 5: pg: Q05W05, (DOI: 10.1029/2009GC002970). Cited by:
|