|
|
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.0.2 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.1.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Komatitsch, D., Martin, R., (2009), "SEISMIC_CPML v1.1.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Komatitsch, D., Martin, R., (2007), "An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation", Geophysics, 72, 5: pg: Sm155-Sm167, (DOI: 10.1190/1.2757586). Cited by:
|
|
|
Martin, R., Komatitsch, D., (2009), "An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation", Geophysical Journal International, 179, 1: pg: 333--344, (DOI: 10.1111/j.1365-246X.2009.04278.x). Cited by:
|
|
|
Martin, R., Komatitsch, D., Ezziani, A., (2008), "An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media", Geophysics, 73, 4: pg: T51-T61, (DOI: 10.1190/1.2939484). Cited by:
|
|
|
Martin, R., Komatitsch, D., Gedney, S. D., Bruthiaux, E., (2010), "A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML)", CMES: Computer Modeling In Engineering & Sciences, 56, 1: pg: 17--42, (DOI: 10.3970/cmes.2010.056.017). Cited by:
|
|
|
Nagaso, Masaru, (2018), "Study of ultrasound wave propagation in a heterogeneous fluid medium for the monitoring of an operating sodium-based nuclear reactor", AMU-CNRS-ECM, Marseille, France: . Cited by:
|
|
|
Michéa, D., Komatitsch, D., (2010), "Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards: Accelerating a wave propagation code using GPUs", Geophysical Journal International, 182, 1: pg: 389--402, (DOI: 10.1111/j.1365-246X.2010.04616.x). Cited by:
|
|
|
Monteiller, V., Chevrot, S., Komatitsch, D., Fuji, N., (2013), "A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model", Geophysical Journal International, 192, 1: pg: 230--247, (DOI: 10.1093/gji/ggs006). Cited by:
|
|
|
Xie, Z., Komatitsch, D., Martin, R., Matzen, R., (2014), "Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML", Geophysical Journal International, 198, 3: pg: 1714--1747, (DOI: 10.1093/gji/ggu219). Cited by:
|
|
|
Komatitsch, D., Vilotte, J-P, (1998), "The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures", Bulletin of the Seismological Society of America, 88, 2: pg: 368--392, (DOI: 10.1785/BSSA0880020368). Cited by:
|
|
|
Tromp, J., Komatitsch, D., (2013), "SPECFEM1D v1.0.4 [software]", : . Cited by:
|
|
|
Tromp, J., Komatitsch, D., (2011), "SPECFEM1D v1.0.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Jiang, W., Xi, C., Wang, W., Ruan, Y., (2021), "Time Window Selection of Seismic Signals for Waveform Inversion Based on Deep Learning", IEEE Transactions on Geoscience and Remote Sensing, : pg: 1--10, (DOI: 10.1109/TGRS.2021.3076531). Cited by:
|
|
|
Kim, Y. H., Liu, Q., Tromp, J., (2011), "Adjoint centroid-moment tensor inversions: Adjoint centroid-moment tensor inversions", Geophysical Journal International, 186, 1: pg: 264--278, (DOI: 10.1111/j.1365-246X.2011.05027.x). Cited by:
|
|
|
Lee, E-J, Chen, P., (2013), "Automating seismic waveform analysis for full 3-D waveform inversions", Geophysical Journal International, 194, 1: pg: 572--589, (DOI: 10.1093/gji/ggt124). Cited by:
|
|
|
Liu, Y., Niu, F., Chen, M., Yang, W., (2017), "3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography", Earth and Planetary Science Letters, 461: pg: 20--29, (DOI: 10.1016/j.epsl.2016.12.029). Cited by:
|
|
|
Lloyd, A. J., Wiens, D. A., Zhu, H., Tromp, J., Nyblade, A. A., Aster, R. C., Hansen, S. E., Dalziel, I. W. D., Wilson, T. J., Ivins, E. R., O'Donnell, J. P., (2019), "Seismic Structure of the Antarctic Upper Mantle Based on Adjoint Tomography", Journal of Geophysical Research: Solid Earth, : (DOI: 10.1029/2019JB017823). Cited by:
|
|
|
Luo, Y., Tromp, J., Denel, B., Calandra, H., (2013), "3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods", Geophysics, 78, 4: pg: S193-S202, (DOI: 10.1190/geo2012-0462.1). Cited by:
|
|
|
Maggi, A., Tape, C., Chao, D., Chen, M., Hjorleifsdottir, V., Liu, Q., Tromp, J., (2012), "Flexwin v1.0.1 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Maggi, A., Tape, C., Chao, D., Chen, M., Hjorleifsdottir, V., Liu, Q., Tromp, J., (2009), "Flexwin v1.0.0 [software]", Computational Infrastructure for Geodynamics: . Cited by:
|
|
|
Maggi, A., Tape, C., Chen, M., Chao, D., Tromp, J., (2009), "An automated time-window selection algorithm for seismic tomography", Geophysical Journal International, 178, 1: pg: 257--281, (DOI: 10.1111/j.1365-246X.2009.04099.x). Cited by:
|
|
|
Schuberth, B. S. A., Zaroli, C., Nolet, G., (2015), "Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals", Geophysical Journal International, 203, 3: pg: 2099--2118, (DOI: 10.1093/gji/ggv389). Cited by:
|
|
|
Scognamiglio, L., Magnoni, F., Tinti, E., Casarotti, E., (2016), "Uncertainty estimations for moment tensor inversions: the issue of the 2012 may 20 Emilia earthquake", Geophysical Journal International, 206: pg: 792--806, (DOI: 10.1093/gji/ggw173). Cited by:
|
|
|
Smith, W. S., Zeng, Z., Carette, J., (2018), "Seismology software: state of the practice", Journal of Seismology, Springer Nature, 22, 3: pg: 755--788, (DOI: 10.1007/s10950-018-9731-3). Cited by:
|
|
|
Tape, C., Liu, Q., Maggi, A., Tromp, J., (2010), "Seismic tomography of the southern California crust based on spectral-element and adjoint methods", Geophysical Journal International, 180, 1: pg: 433--462, (DOI: 10.1111/j.1365-246X.2009.04429.x). Cited by:
|
|
|
Xiao, Z., Fuji, N., Iidaka, T., Gao, Y., Sun, X., Liu, Q., (2020), "Seismic Structure Beneath the Tibetan Plateau From Iterative Finite-Frequency Tomography Based on ChinArray: New Insights Into the Indo-Asian Collision", Journal of Geophysical Research: Solid Earth, 125, 2: (DOI: 10.1029/2019JB018344). Cited by:
|
|
|
Yuan, Y. O., Bozdag, E., Ciardelli, C., Gao, F., Simons, F. J., (2020), "The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography", Geophysical Journal International, 221, 2: pg: 1145--1164, (DOI: 10.1093/gji/ggaa063). Cited by:
|
|
|
Zhu, H., Bozdag, E., Duffy, T. S., Tromp, J., (2013), "Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle", Earth and Planetary Science Letters, 381: pg: 1--11, (DOI: 10.1016/j.epsl.2013.08.030). Cited by:
|
|
|
Zhu, H., Bozdag, E., Peter, D., Tromp, J., (2012), "Structure of the European upper mantle revealed by adjoint tomography", Nature Geoscience, 5, 7: pg: 493--498, (DOI: 10.1038/ngeo1501). Cited by:
|
|
|
Zhu, H., Bozdag, E., Tromp, J., (2015), "Seismic structure of the European upper mantle based on adjoint tomography", Geophysical Journal International, 201, 1: pg: 18--52, (DOI: 10.1093/gji/ggu492). Cited by:
|
|
|
Zhu, H., Komatitsch, D., Tromp, J., (2017), "Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray", Geophysical Journal International, 211, 1: pg: 349--377, (DOI: 10.1093/gji/ggx305). Cited by:
|
|
|
Zhu, H., Li, X., Yang, J., Stern, R. J., Lumley, D. E., (2020), "Poloidal- and toroidal-mode mantle flows underneath the Cascadia Subduction Zone", Geophysical Research Letters, 47, 14: pg: e2020GL087530, (DOI: 10.1029/2020GL087530). Cited by:
|
|
|
Zhu, H., Stern, R. J., Yang, J., (2020), "Seismic evidence for subduction-induced mantle flows underneath Middle America", Nature Communications, 11, 1: (DOI: 10.1038/s41467-020-15492-6). Cited by:
|
|
|
Zhu, H., Tromp, J., (2013), "Mapping Tectonic Deformation in the Crust and Upper Mantle Beneath Europe and the North Atlantic Ocean", Science, 341, 6148: pg: 871--875, (DOI: 10.1126/science.1241335). Cited by:
|
|
|
Artru, J., Lognonné, P., Blanc, E., (2001), "Normal modes modelling of post-seismic ionospheric oscillations", Geophysical Research Letters, 28, 4: pg: 697--700, (DOI: 10.1029/2000GL000085). Cited by:
|
|
|
Attanayake, J., Ferreira, A. M. G., Berbellini, A., Morelli, A., (2017), "Crustal structure beneath Portugal from teleseismic Rayleigh Wave Ellipticity", Tectonophysics, 712-713: pg: 344--361, (DOI: 10.1016/j.tecto.2017.06.001). Cited by:
|
|
|
Babikoff, J. C., (2019), "Long period Rayleigh wave phase velocity tomography using USArray", Geochemistry, Geophysics, Geosystems, 20, 4: pg: 1990--2006, (DOI: 10.1029/2018GC008073). Cited by:
|
|
|
Beghein, C., Yuan, K., Schmerr, N., Xing, Z., (2014), "Changes in Seismic Anisotropy Shed Light on the Nature of the Gutenberg Discontinuity", Science, 343, 6176: pg: 1237--1240, (DOI: 10.1126/science.1246724). Cited by:
|
|
|
Bissig, F., Khan, A., Driel, M., Stähler, S. C., Giardini, D., Panning, M., Drilleau, Mélanie, Lognonné, P., Gudkova, T. V., Zharkov, V. N., Plesa, A-C, Banerdt, W. B., (2018), "On the Detectability and Use of Normal Modes for Determining Interior Structure of Mars", Space Science Reviews, 214, 8: pg: 114, (DOI: 10.1007/s11214-018-0547-9). Cited by:
|
|
|
Butler, R., Tsuboi, S., (2021), "Antipodal seismic reflections upon shear wave velocity structures within Earth's inner core", Physics of the Earth and Planetary Interiors, : pg: 106802, . Cited by:
|
|
|
Bützler, Clara, (2020), "Gravity gradients of prompt elasto-gravity signals Aspects of their simulation and the possibility to measure them: A case study for the Tohoku-Oki earthquake", FSU Jena: . Cited by:
|
|
|
Cheng, W., Hu, X. G., Liu, L. T., (2019), "Azimuthal anisotropy beneath the deep central Aleutian subduction zone from normal mode coupling", Journal of Geodynamics, 133: pg: 101673, (DOI: 10.1016/j.jog.2019.101673). Cited by:
|
|
|
Cheng, X-Q, Liu, Q-H, Li, P. P., (2016), "Inverting Rayleigh surface wave velocities for eastern Tibet and western Yangtze craton crustal thickness based on deep learning neural networks", Nonlinear Processes in Geophysics Discussions, 2016: pg: 1--9, (DOI: 10.5194/npg-2016-39). Cited by:
|
|
|
Cheng, X., Liu, Q., Li, P., Liu, Y., (2018), "Inverting Rayleigh surface wave velocities for crustal thickness in eastern Tibet and the western Yangtze craton based on deep learning neural networks", Nonlinear Processes in Geophysics Discussions, 26: pg: 61--71, (DOI: 10.5194/npg-26-61-2019). Cited by:
|
|
|
Colton, L., L., B. S., George, Z., W., P. R., Fan-Chi, L., C., E. Z., (2018), "Mid-crustal deformation in the Central Andes constrained by radial anisotropy", Journal of Geophysical Research: Solid Earth, ja: (DOI: 10.1029/2017JB014936). Cited by:
|
|
|
Dalton, C. A., Bao, X., Ma, Z., (2016), "The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation", Earth and Planetary Science Letters, 457: pg: 250--262, (DOI: 10.1016/j.epsl.2016.10.014). Cited by:
|
|
|
Wit, R. W. L., Käufl, P. J., Valentine, A. P., Trampert, J., (2014), "Bayesian inversion of free oscillations for Earth's radial (an)elastic structure", Physics of the Earth and Planetary Interiors, 237: pg: 1--17, (DOI: 10.1016/j.pepi.2014.09.004). Cited by:
|
|
|
Wit, R. W. L., Trampert, J., (2015), "Robust constraints on average radial lower mantle anisotropy and consequences for composition and texture", Earth and Planetary Science Letters, 429: pg: 101--109, (DOI: 10.1016/j.epsl.2015.07.057). Cited by:
|