

Tutorial IV Multi-material, self-consistent subduction with a free surface¹ Anne Glerum

¹Schmeling et al., PEPI, 2008

Recap Tutorial III

Succeeded in:

- Setting up a model with one compositional heterogeneity
- Using ASPECT's function parser
- Setting up mesh-independent initial conditions
- Tackling benchmark problems

By the end of this tutorial, you should be able to

- Write and install new material **plugins**
- Modify the input parameter file for a subduction model with multiple materials
- Understand issues regarding averaging
- Understand the concept of "sticky-air" and its effect on the solver

Simple subduction

Start simple:

Subduction model of Schmeling et al. 2008 (PEPI 171)

- 2D
- No temperature effects
- Constant viscosities
- Benchmark \rightarrow

results of other codes to compare

Schmeling et al. 2008 subduction CIG COMPUTATIONAL for GEODYNAMICS

September 4, 2014

GeoMod 2014

Schmeling et al. 2008 subduction CIG COMPUTATIONAL for GEODYNAMICS

Although a relatively simple setup,

it discusses very important points:

- Effect of different **averaging** methods on viscosities near rheological boundaries
- **Decoupling** subducting plate from the surface
- Approximation of free surface through sticky-air

Sticky-air

- Thin layer of relatively low viscosity (10¹⁹ Pas) and density (0 kg/m³) to allow for surface deformation
- No need to deform grid, but
- High viscosity contrasts and
- High resolution needed

Tasks

Changes compared to Tutorial III:

- Prescribe parameters of multiple (>2) materials
- Implement 4 different types of averaging of materials

\rightarrow

- 1. Modify schmeling_empty.prm
- 2. Write a new Material Model based on assigned averaging method
- 3. Run simulation and visualize results
- 4. Report slap tip depth after 1 and 2 My

We will begin by editing the input file

- 2. Open the parameter file for editing

> gedit schmeling_empty.prm

Now read through the following sections in the input file and edit the red sections:

- 1. Global parameters
- 2. Geometry model
- 3. Compositional fields
- 4. Material model
- 5. Compositional initial conditions

Global parameters

set Dimension	= 2			
set Start time	= 0			
set End time	= 0			
set Use years in output instead of seconds = true				
set Number of cheap solver steps	= 0			
set Output directory	= schmeling			

Geometry model

```
subsection Geometry model
set Model name = box
subsection Box
set X extent = 2000000
set Y extent = 750000
set X repetitions = 3
end
end
```

September 4, 2014

Compositional fields

GeoMod 2014

different densities and viscosities

GeoMod 2014

Material Model plugins

1. Change to the appropriate directory

> cd ~/ASPECT_TUTORIAL/aspect/source/material_model

2. What files are there?

Plugin organization

Plugins:

- for Geometry, Material, Gravity etc. in ~/source
- derive from interface.cc
- can be selected from the input file

A Material Model plugin should at least provide

- 1. Viscosity
- 2. Density
- 3. Specific heat

- 4. Thermal conduct.
- 5. Thermal expansion
- 6. Compressibility

The Material Model plugin – viscosity function

So far, we used Material Model simple.cc

> gedit simple.cc

The Material Model plugin – viscosity function

So far, we used Material Model simple.cc

> gedit simple.cc

GeoMod 2014

The Material Model plugin – viscosity function

So far, we used Material Model simple.cc

> gedit simple.cc

Writing a viscosity function

ASPECT: build on others!

- XXX.cc is a slightly adapted copy of simple.cc
- Implement a viscosity function (line 35) that averages the contribution of the fields as follows:
 - Group 1: Harmonic averaging
 - Group 2: Geometric averaging
 - Group 3: Arithmetic averaging
 - Group 4: Infinite norm

 \rightarrow

Writing a viscosity function

Group 1 - Harmonic

$$\eta_{harm} = \frac{c_1 + c_2 + c_3}{\frac{c_1}{\eta_1} + \frac{c_2}{\eta_2} + \frac{c_3}{\eta_3}}$$

Group 3 - Arithmetic

$$\eta_{arith} = \frac{c_1 \eta_1 + c_2 \eta_2 + c_3 \eta_3}{c_1 + c_2 + c_3}$$

Group 2 - Geometric $\log \eta_{geom} = \frac{c_1 \log \eta_1 + c_2 \log \eta_2 + c_3 \log \eta_3}{c_1 + c_2 + c_3} \quad \begin{array}{l} \text{Group 4 - Infinite norm} \\ \eta_{inf} &= \eta_{\max(c_i)} \\ \end{array}$

Where c_i represent the values of the 3 compositional fields, and η_i are the viscosities of each corresponding field.

~/ASPECT_TUTORIAL/aspect/source/material_model/schmeling.cc is a working material model with each averaging method implemented in case you need it

September 4, 2014

Advection of a field

The advection of compositional fields can result in underand overshooting of the c_i values near steep gradients \rightarrow

1. Prevent oscillations Stabilization (Guermond et al., J. Comput. Phys., 2011): $\frac{\partial c_i}{\partial t} + u \cdot \nabla c_i - \nabla \cdot v_h \nabla c_i = 0$

2. *Deal with oscillations* Cut off c_i between 0 and 1

ADVECTION OF A STEP FUNCTION

Fig. 1. Numerical advection of a step function over 25 Courant-Friedrichs-Lewy time steps. T0 is the initial step function and T25 is the advected step function.Two types of numerical errors are present: (1) numerical diffusion reflected in the tilting of the step; and (2) numerical dispersion resulting in the leading edge ripples. The numerical scheme employed was second-order accurate for smooth flow problems.

- Always end declarations and assignments with ";"
- The first entry of a vector is accessed with "0": e.g. composition[0]
- Calculating a minimum of two numbers with:
 e.g. std::min(composition[0],1.0)

Plugin installation

> cd ~/ASPECT_TUTORIAL/aspect/include/ \
 aspect/material_model/

Here the corresponding header file XXX.h is located

> cd ~/ASPECT_TUTORIAL/aspect/debug

Normally, you would call

> cmake .

> make

Here we built the debug version, as opposed to the optimized release version

to compile and install your new plugin. Build system *cmake* will automatically detect it. Now you only need to call

> make -j2

Using ASPECT

Now run ASPECT in the terminal

- 3. If correct,
 - > cd ~/ASPECT_TUTORIAL/aspect/release

> make -j2

- 4. Change model time to 2.5 My and rerun (this will take about 15 minutes, have a coffee)
- 5. Use ParaView to visualize slab evolution

> paraview schmeling/solution.pvd

Subduction evolution

Report slab tip depth after 1 and 2 My and model time

	Harmonic	Geometric	Arithmetic	Infinite
1 My Slab tip depth	(???)	(???)	(???)	(???)
2 My Slab tip depth	(???)	(???)	(???)	(???)
Model time after 15 min wall time	(???)	(???)	(???)	(???)

Subduction evolution

Finding slab tip depth in ParaView:

- Plot isocontour $C_2 = 0.5$
- 1. Use grid lines to estimate, or
- Use Spreadsheet view of isocontour with Show only selected elements and
 3D view Select Points On, or
- 3. Use Spreadsheet view and Python calculator, or
- 4. Next time, write an ASPECT postprocessor 😳

Subduction evolution answer key CIG COMPUTATIONAL for GEODYNAMICS

	Harmonic	Geometric	Arithmetic	Infinite
1 My Slab tip depth	205,892 m	202,983	202,387	202,291
2 My Slab tip depth	215,181 m	205,587	203,725	203,629
Model time after 15 min wall time	2.11903e6 yr	2.14136e6	2.20938e6	329,512
1.95E+0	1 My	2	2 My	
E 2.00E+0	5			Harmonic
d 2.05E+0	5			-Geometric
9 2.10E+0	5			Arithmetic
9 2 2 2 4 9 9 9 1 1 1 1 1 1 1 1 1 1	5			mmme
2.20E+0	5			
September 4, 2014		GeoMod 2014		29

Results after 2 My

GeoMod 2014

So what averaging do we use? Clo COMPUTATIONAL for GEODYNAMICS

• Averaging affects rheological boundaries

Schmeling et al. (2008):

- Harmonic → equivalent to effective viscosity of 2 viscous elements acting in series, like channel flow with flow-parallel compositional boundary, i.e. simple shear. Results in weak effective viscosity.
- Arithmetic → 2 viscous elements in parallel, interface-parallel pure shear. Results in stiff effective viscosity.
- Geometric norm has no physical model, intermediate viscosity.
- → Harmonic mean more appropriate for high viscosity contrasts (1e4) and flows dominated by cusp-like overriding wedges

Harmonic: higher resolution, slower subduction Geometric: higher resolution, faster subduction

Shaded areas from Schmeling et al., PEPI, 2008, lines obtained with ASPECT

Red colors indicate composition 2

Extending on subduction models CIG COMPUTATIONAL for GEODYNAMICS

- More materials with different characteristics, i.e. overriding plate and crust
- Realistic deformation mechanisms,
 i.e. elasto-visco-plasticity
- Complex boundary conditions,
 i.e. plate velocities, free surfaces, open boundaries
- 4D modeling

Example – Quinquis et al. (in prep) CI C COMPUTATIONAL for GEODYNAMICS

GEOMOD 2014, ASPECT Tutorial

Example – Quinquis et al. (in prep) CI C COMPUTATIONAL for GEODYNAMICS

ASPECT 2014 – visco-plastic, thermo-mechanically coupled subduction, 8 materials 太