[cig-commits] r15934 - in doc/geodynamics.org/benchmarks/trunk: magma short

luis at geodynamics.org luis at geodynamics.org
Wed Nov 4 01:02:40 PST 2009


Author: luis
Date: 2009-11-04 01:02:38 -0800 (Wed, 04 Nov 2009)
New Revision: 15934

Added:
   doc/geodynamics.org/benchmarks/trunk/magma/index-old.rst
Modified:
   doc/geodynamics.org/benchmarks/trunk/magma/index.html
   doc/geodynamics.org/benchmarks/trunk/magma/index.rst
   doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.html
   doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.rst
   doc/geodynamics.org/benchmarks/trunk/magma/milestone1.html
   doc/geodynamics.org/benchmarks/trunk/magma/milestone1.rst
   doc/geodynamics.org/benchmarks/trunk/magma/milestone2.rst
   doc/geodynamics.org/benchmarks/trunk/magma/milestone3.rst
   doc/geodynamics.org/benchmarks/trunk/short/index.html
Log:
Updated magma section (link to figures)

Copied: doc/geodynamics.org/benchmarks/trunk/magma/index-old.rst (from rev 15933, doc/geodynamics.org/benchmarks/trunk/magma/index.rst)
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/index-old.rst	                        (rev 0)
+++ doc/geodynamics.org/benchmarks/trunk/magma/index-old.rst	2009-11-04 09:02:38 UTC (rev 15934)
@@ -0,0 +1,171 @@
+Benchmarks
+==========
+
+* An Introduction and Tutorial to the "McKenzie Equations" for Magma Migration
+    [last modified 2007-01-15] --> mckenzie-equations.rst
+    
+    A new formulation for the equations of magma migration in viscous materials
+    as originally derived by McKenzie is presented, as well as a set of 
+    well-understood special case problems that form a useful benchmark-suite
+    for developing and testing new codes.
+
+
+* Running stgMADDs Benchmarks
+    [last modified 2009-04-02] --> running-stgmadds.rst
+    
+    The Magma Development team has finished the alpha release of the
+    Magma Dynamics Demonstration Suite (MADDs). The initial code implements
+    the zero porosity / no melting magma benchmark for mid-ocean ridge
+    solid flows in 2D and 3D built on the Underworld framework. The purpose
+    of this code is principally to validate accurate pressure solvers for
+    Stokes flow in current CIG supported software. The stgMADDs source
+    code is available in CIG's Mercurial Repository (geodynamics.org/hg).
+
+-------------------------------------------------------------------------------
+
+* Milestone1 Results and Analysis
+    [last modified 2008-02-08] --> milestone1.rst
+    
+    Details how to run the first milestone of the MADDs project in 2D and 3D
+    and provides some results of those simulations. It also gives the rates
+    of convergence of the pressure gradient solutions as the resolution
+    is increased.
+
+      2D Ridge Model
+        Velocity, pressure, and pressure gradients solutions and L2 errors
+        for a 2D ridge model with 120 x 60 elements.
+
+      3D Ridge Model
+        Velocity, pressure, and pressure gradients solutions and L2 error fields
+        for 3D ridge model.
+
+      Global Pressure Gradient Errors for 2D Ridge Model
+        Normalized global L2 errors.
+
+      Global Pressure Gradient Errors for 3D Ridge Model
+        Global normalized L2 pressure gradient errors at varying resolutions.
+
+-------------------------------------------------------------------------------
+
+* Milestone2 Results and Analysis
+    [last modified 2008-02-08] --> milestone2.rst
+
+    Details the results of the Milestone2 simulations and analyzes the accuracy
+    of the advection scheme.
+
+      Gaussian Porosity Field Advection
+        Advection of Gaussian porosity field as a Stokes equation force term.
+        The lower density porosity region rises due to gravity.
+
+      Ridge Model with Gaussian Porosity Field
+        Stokes flow with 2D ridge model boundary conditions and Gaussian
+        porosity initial distribution, driven by a porosity dependent
+        force term.
+
+      Semi Lagrangian Advection Scheme Test - Step Function
+        Diagonal step function initial distribution subjected to a
+        shearing velocity field.
+
+      Semi Lagrangian Advection Scheme Test - Gaussian Distribution
+        Gaussian initial distribution subjected to a shearing velocity field.
+
+      Error Convergence for Advection Scheme - Step Function IC
+        Normalized global L2 errors for semi Lagrangian advection scheme
+        with a diagonal step function initial condition as a function
+        of resolution.
+
+      Error Convergence for Advection Scheme - Gaussian IC
+        Normalized global L2 errors for semi Lagrangian advection scheme
+        with Gaussian initial distribution as a function of resolution.
+
+-------------------------------------------------------------------------------
+
+* Milestone3 Results
+    [last modified 2008-02-08] --> milestone3.rst
+
+    Details the results for the third milestone, in which the melt velocity
+    was determined given the existing solid velocity and pressure fields.
+
+      Melt Model - 2D Ridge with Constant Porosity
+        Solid and melt velocity, pressure, and pressure gradient fields
+        for 2D ridge model with constant porosity. Melt velocity magnitudes
+        are significantly larger near the point of discontinuity due to
+        their proportionality to the pressure gradients, which are largest
+        at these points.
+
+      Melt Model - Gaussian Porosity Driven Flow
+        Solid and melt velocity, pressure, and pressure gradient fields
+        for Stokes flow driven by a Gaussian initial porosity distribution.
+
+-------------------------------------------------------------------------------
+
+* Milestone4 Results and Analysis
+    [last modified 2008-09-28] --> milestone4.rst
+
+    Discussion of the system being modeled, and details of how to run the
+    model with different initial conditions in 2D and 3D.
+
+      2D Solitary Wave
+        A 2D solitary wave with a wave speed of 7 rising through a solid
+        with a constant speed of -2. The wave shows no visible diffusive
+        behavior.
+
+      Noisy 1D Solitary Wave Initial Condition
+        Initial condition of a vertically changing 1D solitary wave with
+        a certain amount of introduced noise, which allows 2D solitary
+        waves to emerge over time.
+
+      Emerging 2D Solitary Waves
+        Solitary waves emerging from a noisy 1D solitary wave initial condition.
+
+      Emergent 2D Solitary Waves
+        Solitary waves having emerged from a noisy 1D solitary wave initial distribution.
+
+-------------------------------------------------------------------------------
+
+* Milestone5 Results and Analysis
+    [last modified 2009-03-26] --> milestone5.rst
+
+    Results and analysis for the isoviscous McKenzie equations (with melting)
+    driven by a corner flow velocity BC.
+
+      Isoviscous McKenzie System with Corner Flow BC - 1
+        After 1 time step
+
+      Isoviscous McKenzie System with Corner Flow BC - 50
+        After 50 time steps
+
+      Isoviscous McKenzie System with Corner Flow BC - 3200
+        After 3200 time steps
+
+      Velocity - x component
+        x-component of the velocity field for the 3D isoviscous McKenzie model
+        with ridge BCs at time step 150.
+
+      Velocity - y component
+        y-component of the velocity field for the 3D isoviscous McKenzie model
+        with ridge BCs at time step 150.
+
+      Porosity
+        Porosity field for the 3D isoviscous McKenzie model with ridge BCs
+        at time step 150.
+
+      Compaction pressure
+        Compaction pressure due to compressibility of the solid phase for the
+        3D isoviscous McKenzie model with ridge BCs at time step 150.
+
+      Melt fraction
+        Melt fraction field representing the melt to solid phase of the
+        3D isoviscous McKenzie model with ridge BCs at time step 150.
+
+      Melt velocity - x component
+        x-component of the melt velocity field for the 3D isoviscous McKenzie model
+        with ridge BCs at time step 150.
+
+      Melt velocity - y component
+        y-component of the melt velocity field for the 3D isoviscous McKenzie model
+        with ridge BCs at time step 150.
+
+-------------------------------------------------------------------------------
+
+URL http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/

Modified: doc/geodynamics.org/benchmarks/trunk/magma/index.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/index.html	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/index.html	2009-11-04 09:02:38 UTC (rev 15934)
@@ -12,213 +12,16 @@
 <div class="document" id="benchmarks">
 <h1 class="title">Benchmarks</h1>
 
-<ul>
-<li><dl class="first docutils">
-<dt>An Introduction and Tutorial to the &quot;McKenzie Equations&quot; for Magma Migration</dt>
-<dd><p class="first">[last modified 2007-01-15] --&gt; mckenzie-equations.rst</p>
-<p class="last">A new formulation for the equations of magma migration in viscous materials
-as originally derived by McKenzie is presented, as well as a set of
-well-understood special case problems that form a useful benchmark-suite
-for developing and testing new codes.</p>
-</dd>
-</dl>
-</li>
-<li><dl class="first docutils">
-<dt>Running stgMADDs Benchmarks</dt>
-<dd><p class="first">[last modified 2009-04-02] --&gt; running-stgmadds.rst</p>
-<p class="last">The Magma Development team has finished the alpha release of the
-Magma Dynamics Demonstration Suite (MADDs). The initial code implements
-the zero porosity / no melting magma benchmark for mid-ocean ridge
-solid flows in 2D and 3D built on the Underworld framework. The purpose
-of this code is principally to validate accurate pressure solvers for
-Stokes flow in current CIG supported software. The stgMADDs source
-code is available in CIG's Mercurial Repository (geodynamics.org/hg).</p>
-</dd>
-</dl>
-</li>
+<!-- http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/ -->
+<ul class="simple">
+<li><a class="reference external" href="mckenzie-equations">An Introduction and Tutorial to the &quot;McKenzie Equations&quot; for Magma Migration</a></li>
+<li><a class="reference external" href="running-stgmadds">Running stgMADDs Benchmarks</a></li>
+<li><a class="reference external" href="milestone1">Milestone1 Results and Analysis</a></li>
+<li><a class="reference external" href="milestone2">Milestone2 Results and Analysis</a></li>
+<li><a class="reference external" href="milestone3">Milestone3 Results and Analysis</a></li>
+<li><a class="reference external" href="milestone4">Milestone4 Results and Analysis</a></li>
+<li><a class="reference external" href="milestone5">Milestone5 Results and Analysis</a></li>
 </ul>
-<hr class="docutils" />
-<ul>
-<li><dl class="first docutils">
-<dt>Milestone1 Results and Analysis</dt>
-<dd><p class="first">[last modified 2008-02-08] --&gt; milestone1.rst</p>
-<p>Details how to run the first milestone of the MADDs project in 2D and 3D
-and provides some results of those simulations. It also gives the rates
-of convergence of the pressure gradient solutions as the resolution
-is increased.</p>
-<blockquote class="last">
-<dl class="docutils">
-<dt>2D Ridge Model</dt>
-<dd><p class="first last">Velocity, pressure, and pressure gradients solutions and L2 errors
-for a 2D ridge model with 120 x 60 elements.</p>
-</dd>
-<dt>3D Ridge Model</dt>
-<dd><p class="first last">Velocity, pressure, and pressure gradients solutions and L2 error fields
-for 3D ridge model.</p>
-</dd>
-<dt>Global Pressure Gradient Errors for 2D Ridge Model</dt>
-<dd><p class="first last">Normalized global L2 errors.</p>
-</dd>
-<dt>Global Pressure Gradient Errors for 3D Ridge Model</dt>
-<dd><p class="first last">Global normalized L2 pressure gradient errors at varying resolutions.</p>
-</dd>
-</dl>
-</blockquote>
-</dd>
-</dl>
-</li>
-</ul>
-<hr class="docutils" />
-<ul>
-<li><dl class="first docutils">
-<dt>Milestone2 Results and Analysis</dt>
-<dd><p class="first">[last modified 2008-02-08] --&gt; milestone2.rst</p>
-<p>Details the results of the Milestone2 simulations and analyzes the accuracy
-of the advection scheme.</p>
-<blockquote class="last">
-<dl class="docutils">
-<dt>Gaussian Porosity Field Advection</dt>
-<dd><p class="first last">Advection of Gaussian porosity field as a Stokes equation force term.
-The lower density porosity region rises due to gravity.</p>
-</dd>
-<dt>Ridge Model with Gaussian Porosity Field</dt>
-<dd><p class="first last">Stokes flow with 2D ridge model boundary conditions and Gaussian
-porosity initial distribution, driven by a porosity dependent
-force term.</p>
-</dd>
-<dt>Semi Lagrangian Advection Scheme Test - Step Function</dt>
-<dd><p class="first last">Diagonal step function initial distribution subjected to a
-shearing velocity field.</p>
-</dd>
-<dt>Semi Lagrangian Advection Scheme Test - Gaussian Distribution</dt>
-<dd><p class="first last">Gaussian initial distribution subjected to a shearing velocity field.</p>
-</dd>
-<dt>Error Convergence for Advection Scheme - Step Function IC</dt>
-<dd><p class="first last">Normalized global L2 errors for semi Lagrangian advection scheme
-with a diagonal step function initial condition as a function
-of resolution.</p>
-</dd>
-<dt>Error Convergence for Advection Scheme - Gaussian IC</dt>
-<dd><p class="first last">Normalized global L2 errors for semi Lagrangian advection scheme
-with Gaussian initial distribution as a function of resolution.</p>
-</dd>
-</dl>
-</blockquote>
-</dd>
-</dl>
-</li>
-</ul>
-<hr class="docutils" />
-<ul>
-<li><dl class="first docutils">
-<dt>Milestone3 Results</dt>
-<dd><p class="first">[last modified 2008-02-08] --&gt; milestone3.rst</p>
-<p>Details the results for the third milestone, in which the melt velocity
-was determined given the existing solid velocity and pressure fields.</p>
-<blockquote class="last">
-<dl class="docutils">
-<dt>Melt Model - 2D Ridge with Constant Porosity</dt>
-<dd><p class="first last">Solid and melt velocity, pressure, and pressure gradient fields
-for 2D ridge model with constant porosity. Melt velocity magnitudes
-are significantly larger near the point of discontinuity due to
-their proportionality to the pressure gradients, which are largest
-at these points.</p>
-</dd>
-<dt>Melt Model - Gaussian Porosity Driven Flow</dt>
-<dd><p class="first last">Solid and melt velocity, pressure, and pressure gradient fields
-for Stokes flow driven by a Gaussian initial porosity distribution.</p>
-</dd>
-</dl>
-</blockquote>
-</dd>
-</dl>
-</li>
-</ul>
-<hr class="docutils" />
-<ul>
-<li><dl class="first docutils">
-<dt>Milestone4 Results and Analysis</dt>
-<dd><p class="first">[last modified 2008-09-28] --&gt; milestone4.rst</p>
-<p>Discussion of the system being modeled, and details of how to run the
-model with different initial conditions in 2D and 3D.</p>
-<blockquote class="last">
-<dl class="docutils">
-<dt>2D Solitary Wave</dt>
-<dd><p class="first last">A 2D solitary wave with a wave speed of 7 rising through a solid
-with a constant speed of -2. The wave shows no visible diffusive
-behavior.</p>
-</dd>
-<dt>Noisy 1D Solitary Wave Initial Condition</dt>
-<dd><p class="first last">Initial condition of a vertically changing 1D solitary wave with
-a certain amount of introduced noise, which allows 2D solitary
-waves to emerge over time.</p>
-</dd>
-<dt>Emerging 2D Solitary Waves</dt>
-<dd><p class="first last">Solitary waves emerging from a noisy 1D solitary wave initial condition.</p>
-</dd>
-<dt>Emergent 2D Solitary Waves</dt>
-<dd><p class="first last">Solitary waves having emerged from a noisy 1D solitary wave initial distribution.</p>
-</dd>
-</dl>
-</blockquote>
-</dd>
-</dl>
-</li>
-</ul>
-<hr class="docutils" />
-<ul>
-<li><dl class="first docutils">
-<dt>Milestone5 Results and Analysis</dt>
-<dd><p class="first">[last modified 2009-03-26] --&gt; milestone5.rst</p>
-<p>Results and analysis for the isoviscous McKenzie equations (with melting)
-driven by a corner flow velocity BC.</p>
-<blockquote class="last">
-<dl class="docutils">
-<dt>Isoviscous McKenzie System with Corner Flow BC - 1</dt>
-<dd><p class="first last">After 1 time step</p>
-</dd>
-<dt>Isoviscous McKenzie System with Corner Flow BC - 50</dt>
-<dd><p class="first last">After 50 time steps</p>
-</dd>
-<dt>Isoviscous McKenzie System with Corner Flow BC - 3200</dt>
-<dd><p class="first last">After 3200 time steps</p>
-</dd>
-<dt>Velocity - x component</dt>
-<dd><p class="first last">x-component of the velocity field for the 3D isoviscous McKenzie model
-with ridge BCs at time step 150.</p>
-</dd>
-<dt>Velocity - y component</dt>
-<dd><p class="first last">y-component of the velocity field for the 3D isoviscous McKenzie model
-with ridge BCs at time step 150.</p>
-</dd>
-<dt>Porosity</dt>
-<dd><p class="first last">Porosity field for the 3D isoviscous McKenzie model with ridge BCs
-at time step 150.</p>
-</dd>
-<dt>Compaction pressure</dt>
-<dd><p class="first last">Compaction pressure due to compressibility of the solid phase for the
-3D isoviscous McKenzie model with ridge BCs at time step 150.</p>
-</dd>
-<dt>Melt fraction</dt>
-<dd><p class="first last">Melt fraction field representing the melt to solid phase of the
-3D isoviscous McKenzie model with ridge BCs at time step 150.</p>
-</dd>
-<dt>Melt velocity - x component</dt>
-<dd><p class="first last">x-component of the melt velocity field for the 3D isoviscous McKenzie model
-with ridge BCs at time step 150.</p>
-</dd>
-<dt>Melt velocity - y component</dt>
-<dd><p class="first last">y-component of the melt velocity field for the 3D isoviscous McKenzie model
-with ridge BCs at time step 150.</p>
-</dd>
-</dl>
-</blockquote>
-</dd>
-</dl>
-</li>
-</ul>
-<hr class="docutils" />
-<p>URL <a class="reference external" href="http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/">http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/</a></p>
 </div>
 </body>
 </html>

Modified: doc/geodynamics.org/benchmarks/trunk/magma/index.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/index.rst	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/index.rst	2009-11-04 09:02:38 UTC (rev 15934)
@@ -1,171 +1,13 @@
+.. http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/
+
 Benchmarks
 ==========
 
-* An Introduction and Tutorial to the "McKenzie Equations" for Magma Migration
-    [last modified 2007-01-15] --> mckenzie-equations.rst
-    
-    A new formulation for the equations of magma migration in viscous materials
-    as originally derived by McKenzie is presented, as well as a set of 
-    well-understood special case problems that form a useful benchmark-suite
-    for developing and testing new codes.
+* `An Introduction and Tutorial to the "McKenzie Equations" for Magma Migration <mckenzie-equations>`_
+* `Running stgMADDs Benchmarks <running-stgmadds>`_
+* `Milestone1 Results and Analysis <milestone1>`_
+* `Milestone2 Results and Analysis <milestone2>`_
+* `Milestone3 Results and Analysis <milestone3>`_
+* `Milestone4 Results and Analysis <milestone4>`_
+* `Milestone5 Results and Analysis <milestone5>`_
 
-
-* Running stgMADDs Benchmarks
-    [last modified 2009-04-02] --> running-stgmadds.rst
-    
-    The Magma Development team has finished the alpha release of the
-    Magma Dynamics Demonstration Suite (MADDs). The initial code implements
-    the zero porosity / no melting magma benchmark for mid-ocean ridge
-    solid flows in 2D and 3D built on the Underworld framework. The purpose
-    of this code is principally to validate accurate pressure solvers for
-    Stokes flow in current CIG supported software. The stgMADDs source
-    code is available in CIG's Mercurial Repository (geodynamics.org/hg).
-
--------------------------------------------------------------------------------
-
-* Milestone1 Results and Analysis
-    [last modified 2008-02-08] --> milestone1.rst
-    
-    Details how to run the first milestone of the MADDs project in 2D and 3D
-    and provides some results of those simulations. It also gives the rates
-    of convergence of the pressure gradient solutions as the resolution
-    is increased.
-
-      2D Ridge Model
-        Velocity, pressure, and pressure gradients solutions and L2 errors
-        for a 2D ridge model with 120 x 60 elements.
-
-      3D Ridge Model
-        Velocity, pressure, and pressure gradients solutions and L2 error fields
-        for 3D ridge model.
-
-      Global Pressure Gradient Errors for 2D Ridge Model
-        Normalized global L2 errors.
-
-      Global Pressure Gradient Errors for 3D Ridge Model
-        Global normalized L2 pressure gradient errors at varying resolutions.
-
--------------------------------------------------------------------------------
-
-* Milestone2 Results and Analysis
-    [last modified 2008-02-08] --> milestone2.rst
-
-    Details the results of the Milestone2 simulations and analyzes the accuracy
-    of the advection scheme.
-
-      Gaussian Porosity Field Advection
-        Advection of Gaussian porosity field as a Stokes equation force term.
-        The lower density porosity region rises due to gravity.
-
-      Ridge Model with Gaussian Porosity Field
-        Stokes flow with 2D ridge model boundary conditions and Gaussian
-        porosity initial distribution, driven by a porosity dependent
-        force term.
-
-      Semi Lagrangian Advection Scheme Test - Step Function
-        Diagonal step function initial distribution subjected to a
-        shearing velocity field.
-
-      Semi Lagrangian Advection Scheme Test - Gaussian Distribution
-        Gaussian initial distribution subjected to a shearing velocity field.
-
-      Error Convergence for Advection Scheme - Step Function IC
-        Normalized global L2 errors for semi Lagrangian advection scheme
-        with a diagonal step function initial condition as a function
-        of resolution.
-
-      Error Convergence for Advection Scheme - Gaussian IC
-        Normalized global L2 errors for semi Lagrangian advection scheme
-        with Gaussian initial distribution as a function of resolution.
-
--------------------------------------------------------------------------------
-
-* Milestone3 Results
-    [last modified 2008-02-08] --> milestone3.rst
-
-    Details the results for the third milestone, in which the melt velocity
-    was determined given the existing solid velocity and pressure fields.
-
-      Melt Model - 2D Ridge with Constant Porosity
-        Solid and melt velocity, pressure, and pressure gradient fields
-        for 2D ridge model with constant porosity. Melt velocity magnitudes
-        are significantly larger near the point of discontinuity due to
-        their proportionality to the pressure gradients, which are largest
-        at these points.
-
-      Melt Model - Gaussian Porosity Driven Flow
-        Solid and melt velocity, pressure, and pressure gradient fields
-        for Stokes flow driven by a Gaussian initial porosity distribution.
-
--------------------------------------------------------------------------------
-
-* Milestone4 Results and Analysis
-    [last modified 2008-09-28] --> milestone4.rst
-
-    Discussion of the system being modeled, and details of how to run the
-    model with different initial conditions in 2D and 3D.
-
-      2D Solitary Wave
-        A 2D solitary wave with a wave speed of 7 rising through a solid
-        with a constant speed of -2. The wave shows no visible diffusive
-        behavior.
-
-      Noisy 1D Solitary Wave Initial Condition
-        Initial condition of a vertically changing 1D solitary wave with
-        a certain amount of introduced noise, which allows 2D solitary
-        waves to emerge over time.
-
-      Emerging 2D Solitary Waves
-        Solitary waves emerging from a noisy 1D solitary wave initial condition.
-
-      Emergent 2D Solitary Waves
-        Solitary waves having emerged from a noisy 1D solitary wave initial distribution.
-
--------------------------------------------------------------------------------
-
-* Milestone5 Results and Analysis
-    [last modified 2009-03-26] --> milestone5.rst
-
-    Results and analysis for the isoviscous McKenzie equations (with melting)
-    driven by a corner flow velocity BC.
-
-      Isoviscous McKenzie System with Corner Flow BC - 1
-        After 1 time step
-
-      Isoviscous McKenzie System with Corner Flow BC - 50
-        After 50 time steps
-
-      Isoviscous McKenzie System with Corner Flow BC - 3200
-        After 3200 time steps
-
-      Velocity - x component
-        x-component of the velocity field for the 3D isoviscous McKenzie model
-        with ridge BCs at time step 150.
-
-      Velocity - y component
-        y-component of the velocity field for the 3D isoviscous McKenzie model
-        with ridge BCs at time step 150.
-
-      Porosity
-        Porosity field for the 3D isoviscous McKenzie model with ridge BCs
-        at time step 150.
-
-      Compaction pressure
-        Compaction pressure due to compressibility of the solid phase for the
-        3D isoviscous McKenzie model with ridge BCs at time step 150.
-
-      Melt fraction
-        Melt fraction field representing the melt to solid phase of the
-        3D isoviscous McKenzie model with ridge BCs at time step 150.
-
-      Melt velocity - x component
-        x-component of the melt velocity field for the 3D isoviscous McKenzie model
-        with ridge BCs at time step 150.
-
-      Melt velocity - y component
-        y-component of the melt velocity field for the 3D isoviscous McKenzie model
-        with ridge BCs at time step 150.
-
--------------------------------------------------------------------------------
-
-URL http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/

Modified: doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.html	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.html	2009-11-04 09:02:38 UTC (rev 15934)
@@ -12,16 +12,13 @@
 <div class="document">
 
 
-<dl class="docutils">
-<dt>An Introduction and Tutorial to the &quot;McKenzie Equations&quot; for Magma Migration</dt>
-<dd><p class="first">[last modified 2007-01-15]</p>
-<p class="last">A new formulation for the equations of magma migration in viscous materials
+<!-- http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf/view -->
+<!-- [last modified 2007-01-15] -->
+<p><a class="reference external" href="/cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf">An Introduction and Tutorial to the &quot;McKenzie Equations&quot; for Magma Migration</a></p>
+<p>A new formulation for the equations of magma migration in viscous materials
 as originally derived by McKenzie is presented, as well as a set of well-understood
 special case problems that form a useful benchmark-suite for developing and
 testing new codes.</p>
-</dd>
-</dl>
-<p>URL <a class="reference external" href="http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf/view">http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf/view</a></p>
 </div>
 </body>
 </html>

Modified: doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.rst	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/mckenzie-equations.rst	2009-11-04 09:02:38 UTC (rev 15934)
@@ -1,10 +1,10 @@
+.. http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf/view
+.. [last modified 2007-01-15]
 
-An Introduction and Tutorial to the "McKenzie Equations" for Magma Migration
-  [last modified 2007-01-15]
+`An Introduction and Tutorial to the "McKenzie Equations" for Magma Migration </cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf>`_
 
-  A new formulation for the equations of magma migration in viscous materials
-  as originally derived by McKenzie is presented, as well as a set of well-understood
-  special case problems that form a useful benchmark-suite for developing and
-  testing new codes.
+A new formulation for the equations of magma migration in viscous materials
+as originally derived by McKenzie is presented, as well as a set of well-understood
+special case problems that form a useful benchmark-suite for developing and
+testing new codes.
 
-URL http://geodynamics.org/cig/workinggroups/magma/workarea/benchmark/McKenzieIntroBenchmarks.pdf/view

Modified: doc/geodynamics.org/benchmarks/trunk/magma/milestone1.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/milestone1.html	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/milestone1.html	2009-11-04 09:02:38 UTC (rev 15934)
@@ -55,13 +55,34 @@
 observed to decrease. This decrease is approximately linear for the 2D
 ridge mode and slightly poorer for the 3D model. Graphs detailing the
 global errors as a function of resolution are given below.</p>
-<p>Related Item(s)</p>
-<blockquote>
-2D Ridge Model
-3D Ridge Model
-Global Pressure Gradient Errors for 2D Ridge Model
-Global Pressure Gradient Errors for 3D Ridge Model</blockquote>
+<!-- fig:2d-ridge-model -->
+<div align="center" class="figure">
+<img alt="2D Ridge Model" src="/cig/workinggroups/magma/workarea/benchmark/ridge2d126x60" />
+<p class="caption">Velocity, pressure, and pressure gradients solutions and L2 errors
+for a 2D ridge model with 120x60 elements.</p>
 </div>
+<!-- fig:3d-ridge-model -->
+<div align="center" class="figure">
+<img alt="3D Ridge Model" src="/cig/workinggroups/magma/workarea/benchmark/ridge3d64x32x64" />
+<p class="caption">Velocity, pressure, and pressure gradients solutions and L2 error
+fields for 3D ridge model.</p>
 </div>
+<!-- fig:global-pressure-gradient-errors-for-2d-ridge-model -->
+<div align="center" class="figure">
+<img alt="Global L2 Errors" src="/cig/workinggroups/magma/workarea/benchmark/ridge2dpressuregradienterrors" />
+<p class="caption">Normalized global L2 errors.</p>
+</div>
+<!-- fig:global-pressure-gradients-for-3d-ridge-model -->
+<div align="center" class="figure">
+<img alt="Global L2 Errors - 3D Ridge Model" src="/cig/workinggroups/magma/workarea/benchmark/ridge2dpressuregradienterrors" />
+<p class="caption">Normalized global L2 pressure gradient errors at varying resolutions.</p>
+</div>
+<!-- Related Item(s) -->
+<!-- 2D Ridge Model -->
+<!-- 3D Ridge Model -->
+<!-- Global Pressure Gradient Errors for 2D Ridge Model -->
+<!-- Global Pressure Gradient Errors for 3D Ridge Model -->
+</div>
+</div>
 </body>
 </html>

Modified: doc/geodynamics.org/benchmarks/trunk/magma/milestone1.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/milestone1.rst	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/milestone1.rst	2009-11-04 09:02:38 UTC (rev 15934)
@@ -48,11 +48,48 @@
 global errors as a function of resolution are given below.
 
 
-Related Item(s)
+.. fig:2d-ridge-model
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/ridge2d126x60
+   :width: 600
+   :align: center
+   :alt: 2D Ridge Model
 
-  2D Ridge Model
-  3D Ridge Model
-  Global Pressure Gradient Errors for 2D Ridge Model
-  Global Pressure Gradient Errors for 3D Ridge Model
+   Velocity, pressure, and pressure gradients solutions and L2 errors
+   for a 2D ridge model with 120x60 elements.
 
 
+.. fig:3d-ridge-model
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/ridge3d64x32x64
+   :width: 600
+   :align: center
+   :alt: 3D Ridge Model
+
+   Velocity, pressure, and pressure gradients solutions and L2 error
+   fields for 3D ridge model.
+
+.. fig:global-pressure-gradient-errors-for-2d-ridge-model
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/ridge2dpressuregradienterrors
+   :width: 600
+   :align: center
+   :alt: Global L2 Errors
+
+   Normalized global L2 errors.
+
+
+.. fig:global-pressure-gradients-for-3d-ridge-model
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/ridge2dpressuregradienterrors
+   :width: 600
+   :align: center
+   :alt: Global L2 Errors - 3D Ridge Model
+
+   Normalized global L2 pressure gradient errors at varying resolutions.
+
+
+.. ----------------------------------------------------
+.. Related Item(s)
+..  2D Ridge Model
+..  3D Ridge Model
+..  Global Pressure Gradient Errors for 2D Ridge Model
+..  Global Pressure Gradient Errors for 3D Ridge Model
+
+

Modified: doc/geodynamics.org/benchmarks/trunk/magma/milestone2.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/milestone2.rst	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/milestone2.rst	2009-11-04 09:02:38 UTC (rev 15934)
@@ -76,13 +76,65 @@
 at a rate much better than linear, with the cubic interpolation method
 proving far superior to the quadratic method.
 
-Related Item(s)
 
-  Gaussian Porosity Field Advection
-  Ridge Model With Gaussian Porosity Field
-  Semi Lagrangian Advection Scheme Test - Step Function
-  Semi Lagrangian Advection Scheme Test - Gaussian Distribution
-  Error Convergence for Advection Scheme - Step Function IC
-  Error Convergence for Advection Scheme - Gaussian IC
+.. fig:gaussian-porosity-field-advection
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone2gaussianporosityfield
+   :align: center
+   :alt: Gaussian Porosity Field Advection
 
+   Advection of Gaussian porosity field as a Stokes equation force term.
+   The lower density porosity region rises due to gravity.
 
+
+.. fig:ridge-model-with-gaussian-porosity-field
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone2ridgemodelgaussianporosity
+   :align: center
+   :alt: Ridge Model with Gaussian Porosity Field
+
+   Stokes flow with 2D ridge model boundary conditions and Gaussian porosity
+   initial distribution, driven by a porosity dependent force term.
+
+.. fig:semi-lagrangian-advection-scheme-test--step-function
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone2advectionschemeteststepfunc
+   :align: center
+   :alt: Semi-Lagrangian Advection Scheme Test - Step Function
+
+   Diagonal step function initial distribution subjected to a shearing
+   velocity field.
+
+.. fig:semi-lagrangian-advection-scheme-test--gaussian-distribution
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone2advectionschemetestgaussiandist
+   :align: center
+   :alt: Semi-Lagrangian Advection Scheme Test - Gaussian Distribution
+
+   Gaussian initial distribution subjected to a shearing velocity field.
+
+
+.. fig:error-convergence-for-advection-scheme--step-function-ic
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone2advectionschemeconvergencestepfunc
+   :align: center
+   :alt: Error Convergence for Advection Scheme - Step Function IC
+
+   Normalized global L2 errors for semi-Lagrangian advection scheme with
+   a diagonal step function initial condition as a function of resolution.
+
+
+.. fig:error-convergence-for-advection-scheme--gaussian-ic
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/ridge2dpressuregradienterrors
+   :align: center
+   :alt: Error Convergence for Advection Scheme - Gaussian IC
+
+   Normalized global L2 errors for semi-Lagrangian advection scheme with
+   Gaussian initial distribution as a function of resolution.
+
+
+.. ----------------------------------------------------------------------
+.. Related Item(s)
+..   Gaussian Porosity Field Advection
+..   Ridge Model With Gaussian Porosity Field
+..   Semi Lagrangian Advection Scheme Test - Step Function
+..   Semi Lagrangian Advection Scheme Test - Gaussian Distribution
+..   Error Convergence for Advection Scheme - Step Function IC
+..   Error Convergence for Advection Scheme - Gaussian IC
+.. 
+

Modified: doc/geodynamics.org/benchmarks/trunk/magma/milestone3.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/magma/milestone3.rst	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/magma/milestone3.rst	2009-11-04 09:02:38 UTC (rev 15934)
@@ -26,10 +26,28 @@
 were applied to validate its accuracy, however qualitatively their
 behavior is observed to be correct.
 
+.. fig:melt-model--gaussian-porosity-driven-flow
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone3gaussianporositydrivenflow
+   :align: center
+   :alt: Melt Model - Gaussian Porosity Driven Flow
 
-Related Item(s)
+   Solid and melt velocity, pressure and pressure-gradient fields
+   for Stokes flow driven by a Gaussian initial porosity dstribution.
 
-  Melt Model - Gaussian Porosity Driven Flow
-  Melt Model - 2D Ridge with Constant Porosity
+.. fig:melt-model--2d-ridge-with-constant-porosity
+.. figure:: /cig/workinggroups/magma/workarea/benchmark/milestone3ridgemodelconstantphi
+   :align: center
+   :alt: Melt Model - 2D Ridge with Constant Porosity
 
+   Solid and melt velocity, pressure and pressure-gradient fields
+   for 2D ridge model with constant porosity. Melt velocity magnitudes
+   are significantly larger near the point of discontinuity due
+   to their proportionality to the pressure gradients, which
+   are largest at these points.
 
+.. ------------------------------------------------
+.. Related Item(s)
+..  Melt Model - Gaussian Porosity Driven Flow
+..  Melt Model - 2D Ridge with Constant Porosity
+
+

Modified: doc/geodynamics.org/benchmarks/trunk/short/index.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/short/index.html	2009-11-04 09:02:28 UTC (rev 15933)
+++ doc/geodynamics.org/benchmarks/trunk/short/index.html	2009-11-04 09:02:38 UTC (rev 15934)
@@ -16,80 +16,37 @@
 <div class="section" id="strike-slip-no-gravity">
 <h1>Strike-slip (no gravity)</h1>
 <ul class="simple">
-<li><a class="reference external" href="strikeslip/description-ss">Description</a></li>
-<li><a class="reference external" href="strikeslip/pylith-0.8-input">PyLith input</a></li>
-<li><a class="reference external" href="strikeslip/geofest-input">GeoFEST input</a></li>
-<li><a class="reference external" href="strikeslip/result">Submitted results</a></li>
-<li><a class="reference external" href="strikeslip/plots">Plots of results</a></li>
+<li><a class="reference external" href="strikeslip/description-ss">Description of strike-slip benchmark</a></li>
+<li><a class="reference external" href="strikeslip/pylith-0.8-input">PyLith input files for strike-slip benchmark</a></li>
+<li><a class="reference external" href="strikeslip/geofest-input">GeoFEST input for strike-slip benchmark</a></li>
+<li><a class="reference external" href="strikeslip/result">Submitted results for strike-slip benchmark</a></li>
+<li><a class="reference external" href="strikeslip/plots">Plots of results for strike-slip benchmark</a></li>
 </ul>
 </div>
 <div class="section" id="reverse-slip-no-gravity">
 <h1>Reverse-slip (no gravity)</h1>
-<ul>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id1">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;description&quot;.</p>
-</div>
-<p><a class="reference external" href="rs-nog/description-rs-nog">Description</a></p>
-</li>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id2">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;pylith input&quot;.</p>
-</div>
-<p><a class="reference external" href="rs-nog/pylith-0.8-input">PyLith input</a></p>
-</li>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id3">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;geofest input&quot;.</p>
-</div>
-<p><a class="reference external" href="rs-nog/geofest-input">GeoFEST input</a></p>
-</li>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id4">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;submitted results&quot;.</p>
-</div>
-<p><a class="reference external" href="rs-nog/results">Submitted results</a></p>
-</li>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id5">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;plots of results&quot;.</p>
-</div>
-<p><a class="reference external" href="rs-nog/plots">Plots of results</a></p>
-</li>
+<ul class="simple">
+<li><a class="reference external" href="rs-nog/description-rs-nog">Description of reverse-slip benchmark (no gravity)</a></li>
+<li><a class="reference external" href="rs-nog/pylith-0.8-input">PyLith input for reverse-slip benchmark (no gravity)</a></li>
+<li><a class="reference external" href="rs-nog/geofest-input">GeoFEST input for reverse-slip benchmark (no gravity)</a></li>
+<li><a class="reference external" href="rs-nog/results">Submitted results for reverse-slip benchmark (no gravity)</a></li>
+<li><a class="reference external" href="rs-nog/plots">Plots of results for reverse-slip benchmark (no gravity)</a></li>
 </ul>
 </div>
 <div class="section" id="reverse-slip-with-gravity">
 <h1>Reverse-slip (with gravity)</h1>
-<ul>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id6">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;description&quot;.</p>
-</div>
-<p><a class="reference external" href="rs/description-rs">Description</a></p>
-</li>
-<li><p class="first">PyLith input (coming soon)</p>
-</li>
-<li><p class="first">GeoFEST input (coming soon)</p>
-</li>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id7">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;submitted results&quot;.</p>
-</div>
-<p><a class="reference external" href="rs/results">Submitted results</a></p>
-</li>
+<ul class="simple">
+<li><a class="reference external" href="rs/description-rs">Description of reverse-slip benchmark</a></li>
+<li>PyLith input (coming soon)</li>
+<li>GeoFEST input (coming soon)</li>
+<li><a class="reference external" href="rs/results">Submitted results</a></li>
 </ul>
 </div>
 <div class="section" id="landers-hector-mine">
 <h1>Landers-Hector Mine</h1>
-<ul>
-<li><div class="first system-message">
-<p class="system-message-title">System Message: WARNING/2 (<tt class="docutils">./short/index.rst</tt>); <em><a href="#id8">backlink</a></em></p>
-<p>Duplicate explicit target name: &quot;description&quot;.</p>
-</div>
-<p><a class="reference external" href="landers/description-landers">Description</a></p>
-</li>
-<li><p class="first">Mesh constructed with LaGriT (coming soon)</p>
-</li>
+<ul class="simple">
+<li><a class="reference external" href="landers/description-landers">Description of Landers-Hector Mine benchmark</a></li>
+<li>Mesh constructed with LaGriT (coming soon)</li>
 </ul>
 </div>
 <div class="section" id="utilities">



More information about the CIG-COMMITS mailing list