[cig-commits] r16028 - short/3D/PyLith/branches/pylith-friction/playpen/friction

brad at geodynamics.org brad at geodynamics.org
Mon Nov 23 20:03:04 PST 2009


Author: brad
Date: 2009-11-23 20:03:04 -0800 (Mon, 23 Nov 2009)
New Revision: 16028

Added:
   short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axial.cfg
Removed:
   short/3D/PyLith/branches/pylith-friction/playpen/friction/pylithapp.cfg
   short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axialdisp.cfg
Modified:
   short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-matprops.spatialdb
   short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8.mesh
   short/3D/PyLith/branches/pylith-friction/playpen/friction/twoquad4-axial.cfg
Log:
Fixed parameters for twohex8 axial test.

Deleted: short/3D/PyLith/branches/pylith-friction/playpen/friction/pylithapp.cfg
===================================================================
--- short/3D/PyLith/branches/pylith-friction/playpen/friction/pylithapp.cfg	2009-11-24 02:46:11 UTC (rev 16027)
+++ short/3D/PyLith/branches/pylith-friction/playpen/friction/pylithapp.cfg	2009-11-24 04:03:04 UTC (rev 16028)
@@ -1,106 +0,0 @@
-# -*- Python -*-
-
-# The settings in this file (pylithapp.cfg) will be read automatically
-# by pylith, as long as the file is placed in the run directory.
-
-# The settings in this file will override any settings in:
-# PREFIX/etc/pylithapp.cfg
-# $HOME/.pyre/pylithapp/pylithapp.cfg
-
-# The settings in this file will be overridden by any .cfg file given
-# on the command line or by any command line settings.
-
-[pylithapp]
-
-# ----------------------------------------------------------------------
-# journal
-# The settings below turn on journal info for the specified components.
-# If you want less output to stdout, you can turn these off.
-# ----------------------------------------------------------------------
-[pylithapp.journal.info]
-timedependent = 1
-explicit = 1
-implicit = 1
-petsc = 1
-solverlinear = 1
-meshioascii = 1
-homogeneous = 1
-implicitelasticity = 1
-quadrature3d = 1
-fiatsimplex = 1
-faultcohesivedyn = 1
-
-# ----------------------------------------------------------------------
-# mesh_generator
-# The settings below control the mesh generation (importing mesh info).
-# ----------------------------------------------------------------------
-# Turn on debugging output for mesh generation.
-[pylithapp.mesh_generator]
-debug = 1
-
-# This component specification means we are using PyLith ASCII format,
-# and we then specify the filename and number of space dimensions for
-# the mesh.
-[pylithapp.mesh_generator.reader]
-filename = twohex8.mesh
-coordsys.space_dim = 3
-
-# ----------------------------------------------------------------------
-# problem
-# Specify the problem settings.
-# This is a time-dependent problem, so we select this as our problem type.
-# We select a total time of 1 year, and a time step size of 0.1 year, so we
-# are performing 10 time steps plus the elastic solution.
-# The spatial dimension for this problem is 3.
-# ----------------------------------------------------------------------
-[pylithapp.timedependent]
-dimension = 3
-normalizer.length_scale = 1.0*m
-
-[pylithapp.timedependent.formulation.time_step]
-total_time = 1.0*year
-dt = 0.1*year
-
-# ----------------------------------------------------------------------
-# materials
-# Specify the material information for the problem.
-# ----------------------------------------------------------------------
-# Change the material type to linear Maxwell viscoelastic.
-[pylithapp.timedependent.materials]
-material = pylith.materials.ElasticIsotropic3D
-
-[pylithapp.timedependent.materials.material]
-
-# We give a label of 'elastic isotropic 3D material' to this material.
-label = Elastic isotropic 3D material
-
-# The cells associated with this material are given a material ID of 1
-# in the mesh file.
-id = 1
-
-# We define uniform material properties for this problem rather than
-# using a spatial database file.
-#db_properties = spatialdata.spatialdb.UniformDB
-#db_properties.values = [vp,vs,density,viscosity]
-#db_properties.data = [5773.502691896258*m/s,3333.333333333333*m/s,2700.0*kg/m**3,1.0e18*Pa*s]
-
-# If we instead wanted to used the 'twohex8-matprops.spatialdb' file to define
-# material properties we would comment out the three 'db' lines above
-# and uncomment the line below:
- db.iohandler.filename = twohex8-matprops.spatialdb
-
-# We are doing 2D quadrature for a quad.
-quadrature.cell = pylith.feassemble.FIATLagrange
-quadrature.cell.dimension = 3
-
-# ----------------------------------------------------------------------
-# PETSc
-# We are using all of the default settings for PETSc except for
-# specifying the Jacobi preconditioner.  Additional PETSc command-line
-# arguments may be found in the PETSc documentation.
-# ----------------------------------------------------------------------
-[pylithapp.petsc]
-pc_type = jacobi
-
-# start_in_debugger = true
-# debugger_timeout = 100

Copied: short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axial.cfg (from rev 16027, short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axialdisp.cfg)
===================================================================
--- short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axial.cfg	                        (rev 0)
+++ short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axial.cfg	2009-11-24 04:03:04 UTC (rev 16028)
@@ -0,0 +1,176 @@
+# -*- Python -*-
+[pylithapp]
+
+# ----------------------------------------------------------------------
+# journal
+# ----------------------------------------------------------------------
+[pylithapp.journal.info]
+timedependent = 1
+implicit = 1
+petsc = 1
+solvernonlinear = 1
+meshioascii = 1
+homogeneous = 1
+elasticityimplicit = 1
+fiatlagrange = 1
+quadrature3d = 1
+faultcohesivedyn = 1
+
+# ----------------------------------------------------------------------
+# mesh_generator
+# ----------------------------------------------------------------------
+[pylithapp.mesh_generator]
+debug = 0
+
+[pylithapp.mesh_generator.reader]
+filename = twohex8.mesh
+coordsys.space_dim = 3
+
+# ----------------------------------------------------------------------
+# problem
+# ----------------------------------------------------------------------
+[pylithapp.timedependent]
+dimension = 3
+normalizer.length_scale = 1.0*m
+formulation = pylith.problems.Implicit
+formulation.solver = pylith.problems.SolverNonlinear
+
+# Set bc to an array with 3 boundary conditions: 'x_neg', 'z_neg' and 'x_pos'.
+bc = [x_neg,z_neg,x_pos]
+bc.x_pos = pylith.bc.Neumann
+
+# Set interfaces to an array with 1 fault: 'fault'.
+interfaces = [fault]
+
+[pylithapp.timedependent.formulation.time_step]
+total_time = 0.0*s
+dt = 1.0*s
+
+# ----------------------------------------------------------------------
+# materials
+# ----------------------------------------------------------------------
+[pylithapp.timedependent.materials]
+material = pylith.materials.ElasticIsotropic3D
+
+[pylithapp.timedependent.materials.material]
+
+# We give a label of 'elastic isotropic 3D material' to this material.
+label = Elastic isotropic 3D material
+
+# The cells associated with this material are given a material ID of 1
+# in the mesh file.
+id = 1
+
+db_properties.iohandler.filename = twohex8-matprops.spatialdb
+
+# We are doing 3D quadrature for a hex8.
+quadrature.cell = pylith.feassemble.FIATLagrange
+quadrature.cell.dimension = 3
+
+
+[pylithapp.timedependent.formulation.time_step]
+total_time = 0.0*s
+dt = 1.0*s
+
+# ----------------------------------------------------------------------
+# boundary conditions
+# ----------------------------------------------------------------------
+# Boundary conditions to be applied to the negative x-side of the mesh.
+[pylithapp.timedependent.bc.x_neg]
+
+# We are fixing the 0 (x) and 1 (y) degree of freedom.
+bc_dof = [0,1]
+
+# The nodes associated with this boundary condition have the name
+# 'x_neg' in the mesh file.
+label = x_neg
+
+# Boundary conditions to be applied to the negative z-side of the mesh.
+[pylithapp.timedependent.bc.z_neg]
+
+# We are fixing the 2 (z) degree of freedom.
+bc_dof = [2]
+
+# The nodes associated with this boundary condition have the name
+# 'x_pos' in the mesh file.
+label = z_neg_nofault
+
+# Boundary conditions to be applied to the positive x-side of the mesh.
+[pylithapp.timedependent.bc.x_pos]
+
+# The nodes associated with this boundary condition have the name
+# 'x_pos' in the mesh file.
+label = x_pos
+
+db_initial = spatialdata.spatialdb.UniformDB
+db_initial.label = Neumann BC +x edge
+db_initial.values = [traction-shear-horiz,traction-shear-vert,traction-normal]
+db_initial.data = [0.0*MPa,0.0*MPa,-12000*MPa]
+
+# Set cell type to quadrilateral 2-D Lagrange).
+quadrature.cell = pylith.feassemble.FIATLagrange
+quadrature.cell.dimension = 2
+
+# ----------------------------------------------------------------------
+# faults
+# ----------------------------------------------------------------------
+[pylithapp.timedependent.interfaces]
+fault = pylith.faults.FaultCohesiveDynL
+
+[pylithapp.timedependent.interfaces.fault]
+
+# The nodes associated with this fault have the name 'fault' in the mesh file.
+label = fault
+
+# The quadrature for a 3D fault is 2D with a linear shape.
+quadrature.cell = pylith.feassemble.FIATLagrange
+quadrature.cell.dimension = 2
+
+db_initial_tractions = spatialdata.spatialdb.UniformDB
+db_initial_tractions.label = "Initial fault tractions"
+db_initial_tractions.values = [traction-shear-leftlateral,traction-shear-updip,traction-normal]
+db_initial_tractions.data = [0.0*Pa,0.0*Pa, -10000.0*MPa]
+
+# ----------------------------------------------------------------------
+# PETSc
+# ----------------------------------------------------------------------
+# We are using all of the default settings for PETSc except for
+# specifying the block Jacobi preconditioner.  Additional PETSc
+# command-line arguments may be found in the PETSc documentation.
+[pylithapp.petsc]
+ksp_rtol = 1.0e-8
+pc_type = asm
+# Change the preconditioner settings (must turn off
+# shift_positive_definite and turn on shift_nonzero).
+sub_pc_factor_shift_positive_definite = 0
+sub_pc_factor_shift_nonzero = 
+
+ksp_monitor = true
+ksp_view = true
+#log_summary = true
+ksp_max_it = 100
+ksp_gmres_restart = 50
+#start_in_debugger = true
+
+snes_monitor = true
+snes_view = true
+ksp_converged_reason = true
+snes_converged_reason = true
+
+# ----------------------------------------------------------------------
+# output
+# ----------------------------------------------------------------------
+# Give basename for VTK domain output of solution over domain.
+[pylithapp.problem.formulation.output.output.writer]
+filename = twohex8-axial.vtk
+
+# Give basename for VTK fault output.
+[pylithapp.timedependent.interfaces.fault.output]
+writer.filename = twohex8-axial-fault.vtk
+vertex_info_fields = []
+vertex_data_fields = []
+
+# Give basename for VTK output of state variables.
+[pylithapp.timedependent.materials.material.output]
+cell_filter = pylith.meshio.CellFilterAvgMesh
+writer.filename = twohex8-axial-statevars.vtk

Deleted: short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axialdisp.cfg
===================================================================
--- short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axialdisp.cfg	2009-11-24 02:46:11 UTC (rev 16027)
+++ short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-axialdisp.cfg	2009-11-24 04:03:04 UTC (rev 16028)
@@ -1,218 +0,0 @@
-# -*- Python -*-
-
-# The settings in this file (pylithapp.cfg) will be read automatically
-# by pylith, as long as the file is placed in the run directory.
-
-# The settings in this file will override any settings in:
-# PREFIX/etc/pylithapp.cfg
-# $HOME/.pyre/pylithapp/pylithapp.cfg
-
-# The settings in this file will be overridden by any .cfg file given
-# on the command line or by any command line settings.
-
-[pylithapp]
-
-# ----------------------------------------------------------------------
-# journal
-# ----------------------------------------------------------------------
-# The settings below turn on journal info for the specified components.
-# If you want less output to stdout, you can turn these off.
-[pylithapp.journal.info]
-timedependent = 1
-implicit = 1
-petsc = 1
-solvernonlinear = 1
-meshioascii = 1
-homogeneous = 1
-elasticityimplicit = 1
-fiatlagrange = 1
-quadrature1d = 1
-faultcohesivedyn = 1
-
-# ----------------------------------------------------------------------
-# mesh_generator
-# ----------------------------------------------------------------------
-# The settings below control the mesh generation (importing mesh info).
-# Turn on debugging output for mesh generation.
-[pylithapp.mesh_generator]
-debug = 0
-
-# This component specification means we are using PyLith ASCII format,
-# and we then specify the filename and number of space dimensions for
-# the mesh.
-[pylithapp.mesh_generator.reader]
-filename = twohex8.mesh
-coordsys.space_dim = 3
-
-# ----------------------------------------------------------------------
-# problem
-# ----------------------------------------------------------------------
-# Specify the problem settings.
-# This is a time-dependent problem, so we select this as our problem type.
-# We select a total time of 0 sec, and a time step size of 1 sec, so we
-# are performing a single time step.
-# The spatial dimension for this problem is 3.
-# For an implicit formulation (using implicit.cfg), we will perform 1
-# implicit time step from t = -1.0 to t = 0.0 (elastic solution step).
-[pylithapp.timedependent]
-dimension = 3
-normalizer.length_scale = 1.0*m
-formulation = pylith.problems.Implicit
-formulation.solver = pylith.problems.SolverNonlinear
-
-# Set bc to an array with 3 boundary conditions: 'x_neg', 'z_neg' and 'x_pos'.
-bc = [x_neg,z_neg,x_pos]
-bc.x_pos = pylith.bc.Neumann
-
-# Set interfaces to an array with 1 fault: 'fault'.
-interfaces = [fault]
-
-
-[pylithapp.timedependent.formulation.time_step]
-total_time = 0.0*s
-dt = 1.0*s
-
-
-# ----------------------------------------------------------------------
-# materials
-# ----------------------------------------------------------------------
-# Specify the material information for the problem.
-# The material type is isotropic elastic formulated for 3-D.
-[pylithapp.timedependent.materials]
-material = pylith.materials.ElasticIsotropic3D
-
-[pylithapp.timedependent.materials.material]
-
-# We give a label of 'Elastic isotropic 3D material' to this material.
-label = Elastic isotropic 3D material
-
-# The cells associated with this material are given a material ID of 0
-# in the mesh file.
-id = 1
-
-# The properties for this material are given in the spatial database file
-# 'twohex8-matprops.spatialdb'.
-db_properties.iohandler.filename = twohex8-matprops.spatialdb
-
-# Set cell type to quadrilateral (3-d Lagrange).
-quadrature.cell = pylith.feassemble.FIATLagrange
-quadrature.cell.dimension = 3
-
-# ----------------------------------------------------------------------
-# boundary conditions
-# ----------------------------------------------------------------------
-# Provide information on the boundary conditions.
-
-# Boundary conditions to be applied to the negative x-side of the mesh.
-[pylithapp.timedependent.bc.x_neg]
-
-# We are fixing the 0 (x) degree of freedom.
-bc_dof = [0]
-
-# The nodes associated with this boundary condition have the name
-# 'x_neg' in the mesh file.
-label = x_neg
-
-# Boundary conditions to be applied to the negative z-side of the mesh.
-[pylithapp.timedependent.bc.z_neg]
-
-# We are fixing the 2 (z) degree of freedom.
-bc_dof = [2]
-
-# The nodes associated with this boundary condition have the name
-# 'x_pos' in the mesh file.
-label = z_neg
-
-# Boundary conditions to be applied to the positive x-side of the mesh.
-[pylithapp.timedependent.bc.x_pos]
-
-# The nodes associated with this boundary condition have the name
-# 'x_pos' in the mesh file.
-label = x_pos
-
-db_initial = spatialdata.spatialdb.UniformDB
-db_initial.label = Neumann BC +x edge
-db_initial.values = [traction-shear-horiz,traction-shear-vert,traction-normal]
-db_initial.data = [0.0*MPa,0.0*MPa,-12000*MPa]
-
-# Set cell type to quadrilateral 2-d Lagrange).
-quadrature.cell = pylith.feassemble.FIATLagrange
-quadrature.cell.dimension = 2
-
-# ----------------------------------------------------------------------
-# faults
-# ----------------------------------------------------------------------
-# Provide information on the fault (interface).
-[pylithapp.timedependent.interfaces]
-
-fault = pylith.faults.FaultCohesiveDynL
-
-# Define fault properties.
-[pylithapp.timedependent.interfaces.fault]
-
-# The nodes associated with this fault have the name 'fault' in the mesh file.
-label = fault
-
-# NOTE: It is possible to assign an ID number to a fault (e.g.,
-# 'id = 10').  Care must be taken when doing this, however, because the
-# assigned ID will become the material ID for the cohesive element.
-# This ID must not conflict with any of the material ID numbers for
-# volume elements.  The default ID for a fault is 100.  If you have a
-# fault in your mesh you must:
-# 1.  If you create your own fault ID, make sure it does not conflict
-#     with any of you material ID's.
-# 2.  If you use the default fault ID, make sure that none of your
-#     material ID's are equal to 100.
-
-# The quadrature for a 3D fault is 2D with a linear shape.
-quadrature.cell = pylith.feassemble.FIATLagrange
-quadrature.cell.dimension = 2
-
-db_initial_tractions = spatialdata.spatialdb.UniformDB
-db_initial_tractions.label = "Initial fault tractions"
-db_initial_tractions.values = [traction-shear-leftlateral,traction-shear-updip,traction-normal]
-db_initial_tractions.data = [0.0*Pa,0.0*Pa, -10000.0*MPa]
-
-# ----------------------------------------------------------------------
-# PETSc
-# ----------------------------------------------------------------------
-# We are using all of the default settings for PETSc except for
-# specifying the block Jacobi preconditioner.  Additional PETSc
-# command-line arguments may be found in the PETSc documentation.
-[pylithapp.petsc]
-ksp_rtol = 1.0e-8
-pc_type = asm
-# Change the preconditioner settings (must turn off
-# shift_positive_definite and turn on shift_nonzero).
-sub_pc_factor_shift_positive_definite = 0
-sub_pc_factor_shift_nonzero = 
-
-ksp_monitor = true
-ksp_view = true
-#log_summary = true
-ksp_max_it = 100
-ksp_gmres_restart = 50
-#start_in_debugger = true
-
-snes_monitor = true
-snes_view = true
-ksp_converged_reason = true
-snes_converged_reason = true
-
-# ----------------------------------------------------------------------
-# output
-# ----------------------------------------------------------------------
-# Give basename for VTK domain output of solution over domain.
-[pylithapp.problem.formulation.output.output.writer]
-filename = twohex8-axial.vtk
-
-# Give basename for VTK fault output.
-[pylithapp.timedependent.interfaces.fault.output]
-writer.filename = twohex8-axial-fault.vtk
-vertex_info_fields = []
-vertex_data_fields = []
-
-# Give basename for VTK output of state variables.
-[pylithapp.timedependent.materials.material.output]
-cell_filter = pylith.meshio.CellFilterAvgMesh
-writer.filename = twohex8-axial-statevars.vtk

Modified: short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-matprops.spatialdb
===================================================================
--- short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-matprops.spatialdb	2009-11-24 02:46:11 UTC (rev 16027)
+++ short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8-matprops.spatialdb	2009-11-24 04:03:04 UTC (rev 16028)
@@ -1,46 +1,17 @@
 #SPATIAL.ascii 1
 
-// This database is used to specify the material properties for all of the
-// examples in this directory.
-
-// This follows the format for a Simple DB (the only type presently available).
 SimpleDB {
 
-  // There are 4 values specified in the database, corresponding to density,
-  // S-velocity, P-velocity, and viscosity (values for shear modulus and Lame's
-  // constant are computed from the density and seismic velocities).
-  num-values = 4
-  value-names =  density vs vp viscosity
-
-  // These are the units used to specify density, vs, and vp.
-  value-units =  kg/m**3  m/s  m/s  Pa*s
-
-  // Values are only specified at a single point since they are constant
-  // throughout the mesh.
+  num-values = 3
+  value-names =  density vs vp
+  value-units =  kg/m**3  m/s  m/s
   num-locs = 1
-
-  // The dimension of the spatial distribution is 0, since it is constant
-  // throughout the mesh.
   data-dim = 0
-
-  // The spatial dimension of the database is 3.
   space-dim = 3
 
-  // We are specifying the data in a Cartesian coordinate system.
   cs-data = cartesian {
-
-    // Our units are already in meters, so we can just multiply by one.
     to-meters = 1.0
-
-    // We are using a 3D Cartesian coordinate system.
     space-dim = 3
   }
 }
-// This is where the data is specified.
-// We only need to specify a single point, since the properties are uniform.
-// The values given here will give a shear modulus and Lame's constant both
-// equal to 30 GPa (Poisson's ratio = 0.25).
-// The entries are:
-// X-coord, Y-coord, Z-coord, density, Vs, Vp viscosity.
-
-0.0  0.0  0.0   2700.0  3333.333333333333  5773.502691896258  1.0e18
+0.0  0.0  0.0   2700.0  3333.333333333333  5773.502691896258 

Modified: short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8.mesh
===================================================================
--- short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8.mesh	2009-11-24 02:46:11 UTC (rev 16027)
+++ short/3D/PyLith/branches/pylith-friction/playpen/friction/twohex8.mesh	2009-11-24 04:03:04 UTC (rev 16028)
@@ -123,4 +123,15 @@
       0  1  2  3  4  5
     }
   }
+
+  // This group of vertices may be used to specify boundary conditions.
+  // There are 4 vertices corresponding to indices 0, 1, 4, and 5.
+  group = {
+    name = z_neg_nofault
+    type = vertices
+    count = 4
+    indices = {
+      0  1  4  5
+    }
+  }
 }

Modified: short/3D/PyLith/branches/pylith-friction/playpen/friction/twoquad4-axial.cfg
===================================================================
--- short/3D/PyLith/branches/pylith-friction/playpen/friction/twoquad4-axial.cfg	2009-11-24 02:46:11 UTC (rev 16027)
+++ short/3D/PyLith/branches/pylith-friction/playpen/friction/twoquad4-axial.cfg	2009-11-24 04:03:04 UTC (rev 16028)
@@ -1,22 +1,9 @@
 # -*- Python -*-
-
-# The settings in this file (pylithapp.cfg) will be read automatically
-# by pylith, as long as the file is placed in the run directory.
-
-# The settings in this file will override any settings in:
-# PREFIX/etc/pylithapp.cfg
-# $HOME/.pyre/pylithapp/pylithapp.cfg
-
-# The settings in this file will be overridden by any .cfg file given
-# on the command line or by any command line settings.
-
 [pylithapp]
 
 # ----------------------------------------------------------------------
 # journal
 # ----------------------------------------------------------------------
-# The settings below turn on journal info for the specified components.
-# If you want less output to stdout, you can turn these off.
 [pylithapp.journal.info]
 timedependent = 1
 implicit = 1
@@ -32,14 +19,9 @@
 # ----------------------------------------------------------------------
 # mesh_generator
 # ----------------------------------------------------------------------
-# The settings below control the mesh generation (importing mesh info).
-# Turn on debugging output for mesh generation.
 [pylithapp.mesh_generator]
 debug = 0
 
-# This component specification means we are using PyLith ASCII format,
-# and we then specify the filename and number of space dimensions for
-# the mesh.
 [pylithapp.mesh_generator.reader]
 filename = twoquad4-axial.mesh
 coordsys.space_dim = 2
@@ -47,13 +29,6 @@
 # ----------------------------------------------------------------------
 # problem
 # ----------------------------------------------------------------------
-# Specify the problem settings.
-# This is a time-dependent problem, so we select this as our problem type.
-# We select a total time of 0 sec, and a time step size of 1 sec, so we
-# are performing a single time step.
-# The spatial dimension for this problem is 2.
-# For an implicit formulation (using implicit.cfg), we will perform 1
-# implicit time step from t = -1.0 to t = 0.0 (elastic solution step).
 [pylithapp.timedependent]
 dimension = 2
 normalizer.length_scale = 1.0*m



More information about the CIG-COMMITS mailing list