[cig-commits] r15720 - doc/geodynamics.org/benchmarks/trunk/geodyn

luis at geodynamics.org luis at geodynamics.org
Wed Sep 30 15:07:27 PDT 2009


Author: luis
Date: 2009-09-30 15:07:25 -0700 (Wed, 30 Sep 2009)
New Revision: 15720

Modified:
   doc/geodynamics.org/benchmarks/trunk/geodyn/index.html
   doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst
Log:
Fixes to geodyn

Modified: doc/geodynamics.org/benchmarks/trunk/geodyn/index.html
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/geodyn/index.html	2009-09-30 22:07:17 UTC (rev 15719)
+++ doc/geodynamics.org/benchmarks/trunk/geodyn/index.html	2009-09-30 22:07:25 UTC (rev 15720)
@@ -296,13 +296,13 @@
 electrical insulators and the magnetic field on the boundaries matches with
 appropriate potential fields in the exterior that imply no external sources
 of the field.</p>
-<p>In both cases the Ekman number is $E = 10^{3}$ and the Prandtl number is
-$Pr = 1$. The Rayleigh number is set to $Ra = 100000$. Note that the
+<p>In both cases the Ekman number is [;E = 10^{3};] and the Prandtl number is
+[;Pr = 1;]. The Rayleigh number is set to [;Ra = 100000;]. Note that the
 definition of the Rayleigh number differs from the one in the published
-cases [6] by a factor of Ekman number, i.e., $Ra=frac{Ra}{E}$. The
+cases [6] by a factor of Ekman number, i.e., [;Ra=frac{Ra}{E};]. The
 magnetic Prandtl number is zero in the non-magnetic convection case 0, and
-is $Pm = 5$ in case 1. The spherical harmonic expansion is truncated at
-degree $ell_{max}=32$ and a four-fold symmetry is assumed in the
+is [;Pm = 5;] in case 1. The spherical harmonic expansion is truncated at
+degree [;]ell_{max}=32;] and a four-fold symmetry is assumed in the
 longitudinal direction (<tt class="docutils literal"><span class="pre">param.f</span></tt> should be linked to <tt class="docutils literal"><span class="pre">param32s4.f</span></tt>
 when you compile MAG). The input parameter files are <tt class="docutils literal"><span class="pre">par.bench0</span></tt>
 for case 0, and <tt class="docutils literal"><span class="pre">par.bench1</span></tt> for case 1; both files reside in the
@@ -315,11 +315,11 @@
 relatively short run of MAG</p>
 <table border="1" class="docutils">
 <colgroup>
-<col width="16%" />
+<col width="17%" />
+<col width="27%" />
+<col width="13%" />
 <col width="28%" />
 <col width="14%" />
-<col width="28%" />
-<col width="15%" />
 </colgroup>
 <tbody valign="top">
 <tr><td>&nbsp;</td>
@@ -328,27 +328,27 @@
 <td>Case 1 Suggested Value</td>
 <td>Mag Case 1</td>
 </tr>
-<tr><td>$E_{kin}$
-$E_{mag}$
-$T$
-$mu_{phi}$
-$B_{theta}$
-$omega$</td>
-<td><p class="first">$58.348 pm 0.050$</p>
-<p>$0.42812 pm 0.00012$
-$-10.1571 pm 0.0020$</p>
-<p class="last">$0.1824 pm 0.0050$</p>
+<tr><td>[;E_{kin};]
+[;E_{mag};]
+[;T;]
+[;mu_{phi};]
+[;B_{theta};]
+[;omega;]</td>
+<td><p class="first">[;58.348 pm 0.050;]</p>
+<p>[;0.42812 pm 0.00012;]
+[;-10.1571 pm 0.0020;]</p>
+<p class="last">[;0.1824 pm 0.0050;]</p>
 </td>
 <td><blockquote class="first">
 58.35</blockquote>
 <p class="last">-10.80</p>
 </td>
-<td>$30.733 pm 0.020$
-$626.41 pm 0.40$
-$0.37338 pm 0.00040$
-$-7.6250 pm 0.0060$
-$-4.9289 pm 0.0060$
-$-3.1017 pm 0.0040$</td>
+<td>[;30.733 pm 0.020;]
+[;626.41 pm 0.40;]
+[;0.37338 pm 0.00040;]
+[;-7.6250 pm 0.0060;]
+[;-4.9289 pm 0.0060;]
+[;-3.1017 pm 0.0040;]</td>
 <td><p class="first">30.72
 627.15</p>
 <p class="last">-7.84</p>
@@ -362,9 +362,9 @@
 <p>In this benchmark, we produce a magnetic field reversal using MAG. The
 input parameter in the source directory for this case is <cite>~/src/par.Rev</cite>.
 There is no longitudinal symmetry in this case, so when you compile MAG,
-use <cite>param32s1.f</cite> linking to <cite>param.f</cite>. The Ekman number is $E=0.02$, the
-Prandtl number is $Pr=1$ and the magnetic Prandtl number is $Pm=10$. The
-Rayleigh number is $Ra=12000$.</p>
+use <cite>param32s1.f</cite> linking to <cite>param.f</cite>. The Ekman number is [;E=0.02;], the
+Prandtl number is [;Pr=1;] and the magnetic Prandtl number is [;Pm=10;]. The
+Rayleigh number is [;Ra=12000;].</p>
 <div class="section" id="results-and-discussions">
 <h2>Results and Discussions</h2>
 <p>This case was run on 32-bit and 64-bit Intel processors. Figure

Modified: doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst
===================================================================
--- doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst	2009-09-30 22:07:17 UTC (rev 15719)
+++ doc/geodynamics.org/benchmarks/trunk/geodyn/index.rst	2009-09-30 22:07:25 UTC (rev 15720)
@@ -10,13 +10,13 @@
 appropriate potential fields in the exterior that imply no external sources
 of the field.
 
-In both cases the Ekman number is $E = 10^{3}$ and the Prandtl number is
-$Pr = 1$. The Rayleigh number is set to $Ra = 100000$. Note that the
+In both cases the Ekman number is [;E = 10^{3};] and the Prandtl number is
+[;Pr = 1;]. The Rayleigh number is set to [;Ra = 100000;]. Note that the
 definition of the Rayleigh number differs from the one in the published
-cases [6] by a factor of Ekman number, i.e., $Ra=\frac{Ra}{E}$. The
+cases [6] by a factor of Ekman number, i.e., [;Ra=\frac{Ra}{E};]. The
 magnetic Prandtl number is zero in the non-magnetic convection case 0, and
-is $Pm = 5$ in case 1. The spherical harmonic expansion is truncated at
-degree $\ell_{max}=32$ and a four-fold symmetry is assumed in the
+is [;Pm = 5;] in case 1. The spherical harmonic expansion is truncated at
+degree [;]\ell_{max}=32;] and a four-fold symmetry is assumed in the
 longitudinal direction (``param.f`` should be linked to ``param32s4.f``
 when you compile MAG). The input parameter files are ``par.bench0``
 for case 0, and ``par.bench1`` for case 1; both files reside in the 
@@ -29,16 +29,16 @@
 and case 1, the values listed were obtained with low resolution and a
 relatively short run of MAG
 
-+--------------+------------------------+------------+------------------------+-------------+
-|              | Case 0 Suggested value | Mag Case 0 | Case 1 Suggested Value | Mag Case 1  |
-+--------------+------------------------+------------+------------------------+-------------+
-| $E_{kin}$    | $58.348 \pm 0.050$     |  58.35     | $30.733 \pm 0.020$     | 30.72       |
-| $E_{mag}$    |                        |            | $626.41 \pm 0.40$      | 627.15      |
-| $T$          | $0.42812 \pm 0.00012$  |            | $0.37338 \pm 0.00040$  |             |
-| $\mu_{\phi}$ | $-10.1571 \pm 0.0020$  | -10.80     | $-7.6250 \pm 0.0060$   | -7.84       |
-| $B_{\theta}$ |                        |            | $-4.9289 \pm 0.0060$   |             |
-| $\omega$     | $0.1824 \pm 0.0050$    |            | $-3.1017 \pm 0.0040$   |             |
-+--------------+------------------------+------------+------------------------+-------------+
++----------------+-------------------------+------------+--------------------------+-------------+
+|                | Case 0 Suggested value  | Mag Case 0 | Case 1 Suggested Value   | Mag Case 1  |
++----------------+-------------------------+------------+--------------------------+-------------+
+| [;E_{kin};]    | [;58.348 \pm 0.050;]    |  58.35     | [;30.733 \pm 0.020;]     | 30.72       |
+| [;E_{mag};]    |                         |            | [;626.41 \pm 0.40;]      | 627.15      |
+| [;T;]          | [;0.42812 \pm 0.00012;] |            | [;0.37338 \pm 0.00040;]  |             |
+| [;\mu_{\phi};] | [;-10.1571 \pm 0.0020;] | -10.80     | [;-7.6250 \pm 0.0060;]   | -7.84       |
+| [;B_{\theta};] |                         |            | [;-4.9289 \pm 0.0060;]   |             |
+| [;\omega;]     | [;0.1824 \pm 0.0050;]   |            | [;-3.1017 \pm 0.0040;]   |             |
++----------------+-------------------------+------------+--------------------------+-------------+
 
 
 Reversal Dynamo Case
@@ -46,9 +46,9 @@
 In this benchmark, we produce a magnetic field reversal using MAG. The
 input parameter in the source directory for this case is `~/src/par.Rev`.
 There is no longitudinal symmetry in this case, so when you compile MAG,
-use `param32s1.f` linking to `param.f`. The Ekman number is $E=0.02$, the
-Prandtl number is $Pr=1$ and the magnetic Prandtl number is $Pm=10$. The
-Rayleigh number is $Ra=12000$.
+use `param32s1.f` linking to `param.f`. The Ekman number is [;E=0.02;], the
+Prandtl number is [;Pr=1;] and the magnetic Prandtl number is [;Pm=10;]. The
+Rayleigh number is [;Ra=12000;].
 
 
 Results and Discussions



More information about the CIG-COMMITS mailing list