[cig-commits] commit: Cleaned up notation in friction notes and lumped solver notes.

Mercurial hg at geodynamics.org
Thu Apr 1 08:40:56 PDT 2010


changeset:   37:740a4c5d6641
tag:         tip
user:        Brad Aagaard <baagaard at usgs.gov>
date:        Thu Apr 01 08:40:31 2010 -0700
files:       friction.tex lumpedsolver.tex
description:
Cleaned up notation in friction notes and lumped solver notes.


diff -r b3db64b9d137 -r 740a4c5d6641 friction.tex
--- a/friction.tex	Tue Mar 30 11:36:25 2010 -0700
+++ b/friction.tex	Thu Apr 01 08:40:31 2010 -0700
@@ -39,7 +39,7 @@ We write the constraints on the fault sl
   \matrix{C} \vec{u} = \vec{d} \text{ on } S_f,
 \end{equation}
 where $\vec{u}$ is the vector of displacements in the global
-coordinate system, $\matrix{C}$ is the matrix the transforms from the
+coordinate system, $\matrix{C}$ is the matrix that transforms from the
 global coordinate system to the fault coordinate system and computes
 the differential displacements across the fault, $\vec{d}$ is the vector of
 fault slip in the fault coordinate system, and $S_f$ is the fault
@@ -48,12 +48,12 @@ surface. For Lagrange vertex $k$, conven
 ``positive'' side of the fault, the terms in the equation are
 \begin{equation}
   \left( \begin{array}{ccccccccc}
-    \ldots & -C_{px} & -C_{py} & -C_{pz} &  &
-      +C_{px} & +C_{py} & +C_{pz} & \ldots \\
-    \ldots & -C_{qx} & -C_{qy} & -C_{qz} &  \ldots &
-       +C_{qx} & +C_{qy} & +C_{qz} & \ldots \\
-    \ldots & -C_{pr} & -C_{ry} & -C_{rz} &  &
-      +C_{pr} & +C_{ry} & +C_{rz} & \ldots \\
+    \ldots & -R_{px} & -R_{py} & -R_{pz} &  &
+      +R_{px} & +R_{py} & +R_{pz} & \ldots \\
+    \ldots & -R_{qx} & -R_{qy} & -R_{qz} &  \ldots &
+       +R_{qx} & +R_{qy} & +R_{qz} & \ldots \\
+    \ldots & -R_{rx} & -R_{ry} & -R_{rz} &  &
+      +R_{rx} & +R_{ry} & +R_{rz} & \ldots \\
    \end{array} \right)
   \left( \begin{array}{c} 
     \vdots \\
@@ -72,7 +72,12 @@ The fault coordinate system is $(p,q,r)$
 The fault coordinate system is $(p,q,r)$ and the global coordinate
 system is $(x,y,z)$. In the fault coordinate system $p$ is the
 horizontal along-strike direction, $q$ is the up-dip direction, and
-$r$ is the fault normal direction.
+$r$ is the fault normal direction. The components of $p$ in the global
+coordinate system are $(R_{px}, R_{py}, R_{pz})$. Similarly, the
+components of $q$ are $(R_{qx} R_{qy}, R_{qz})$ and the components of
+$r$ are $(R_{rx}, R_{ry}, R_{rz})$.
+
+\vdots
 
 We start with the functional for the total potential energy, while
 imposing the constraints associated with fault slip using Lagrange
@@ -85,8 +90,8 @@ Lagrange multipliers yields
 Lagrange multipliers yields
 \begin{gather}
   \frac{\partial \Pi}{\partial u_k} = \ldots + \lambda_k^T
-  \matrix{C_k}^T = 0, \\
-  \frac{\partial \Pi}{\partial \lambda_k} = \matrix{C_k} \vec{u_k} -
+  \matrix{R_k}^T = 0, \\
+  \frac{\partial \Pi}{\partial \lambda_k} = \matrix{R_k} \vec{u_k} -
   \vec{d_k} = 0.
 \end{gather}
 
@@ -240,9 +245,9 @@ fault constitutive model and the one nee
 
 We compute the sensitivity starting with equation ??,
 \begin{gather}
-  A u + C^T l = b \\
-  A \partial u + C^T \partial l = 0 \\
-  A \partial u = -C^T \partial l.
+  \matrix{A} \vec{u} + \matrix{C}^T \vec{l} = \vec{b} \\
+  \matrix{A} \partial \vec{u} + \matrix{C}^T \partial \vec{l} = 0 \\
+  \matrix{A} \partial \vec{u} = -\matrix{C}^T \partial \vec{l}.
 \end{gather}
 
 \subsubsection{Nondiagonal $A$}
@@ -270,15 +275,19 @@ contain entries coupling the two sides o
 contain entries coupling the two sides of the fault. Using this
 decomposition of $A$, we solve two linear problems,
 \begin{gather}
-  A_i \partial u_i = C^T \partial l \\
-  A_j \partial u_j = -C^T \partial l,
+  \matrix{A_i} \partial \vec{u_i} = \matrix{C}^T \partial \vec{l} \\
+  \matrix{A_j} \partial \vec{u_j} = -\matrix{C}^T \partial \vec{l},
 \end{gather}
 and use the relation between displacement and slip
 \begin{equation}
-  \matrix{C} \vec{\partial u} = \vec{\partial d},
+  \matrix{C} \partial \vec{u} = \partial \vec{d},
 \end{equation}
-to compute the change in slip associated with the change in the
-Lagrange multipliers.
+to estimate the change in slip associated with the change in the
+Lagrange multipliers. These two linear systems effectively assume that
+the deformation associated with the change in Lagrange multipliers is
+localized to the degrees of freedom adjacent to the fault (i.e., all
+vertices not on the fault are fixed). For most elastic problems, this
+approximation is very good.
 
 These two linear problems involve only the degrees of freedom
 associated with the cohesive cells. Furthermore, we associate the
@@ -295,11 +304,11 @@ In the case where $A$ is a diagonal matr
 In the case where $A$ is a diagonal matrix, we can solve the
 sensitivity equation directly,
 \begin{equation}
-  \partial u = -C A^{-1} C^T \partial l.
+  \partial \vec{u} = -\matrix{C} \matrix{A}^{-1} \matrix{C}^T \partial \vec{l}.
 \end{equation}
 Premultiplying by $\matrix{C}$ leads to
 \begin{equation}
-  \partial d = -C A^{-1} C^T \partial l.
+  \partial \vec{d} = -\matrix{C} \matrix{A}^{-1} \matrix{C}^T \partial \vec{l}.
 \end{equation}
 
 For Lagrange vertex $k$, conventional vertex $i$ on the
@@ -321,29 +330,29 @@ For Lagrange vertex $k$, conventional ve
 \end{equation}
 \begin{align}
   S_{pp} &= 
-      C_{px}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{py}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{pz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{px}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{py}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{pz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{pq} &= 
-      C_{px}C_{qx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{py}C_{qy}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{pz}C_{qz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{px}R_{qx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{py}R_{qy}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{pz}R_{qz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{pr} &= 
-      C_{px}C_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{py}C_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{pz}C_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{px}R_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{py}R_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{pz}R_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{qq} &= 
-      C_{qx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{qy}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{qz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{qx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{qy}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{qz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{qr} &= 
-      C_{qx}C_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{qy}C_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{qz}C_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{qx}R_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{qy}R_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{qz}R_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{rr} &= 
-      C_{rx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{ry}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{rz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right).
+      R_{rx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{ry}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{rz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right).
 \end{align}
 
 In the special case where A contains only intertial terms (e.g., there
@@ -369,9 +378,9 @@ so that the sensitivity matrix, S, is di
 
 The main disadvantage of using tractions rather than forces for the
 Lagrange multipliers is that it introduces asymmetry into the Jacobian
-matrix. The term $\matrix{C_u}^T$ now includes terms associated with
+matrix. The term $\matrix{R_u}^T$ now includes terms associated with
 the fault area in addition to the direction cosines, whereas the term
-$\matrix{C_l}$ only includes terms associated with the direction
+$\matrix{R_l}$ only includes terms associated with the direction
 cosines. For low-order basis functions there may be no advantage in
 associating tractions with the Lagrange multiplier DOF rather than
 forces.
diff -r b3db64b9d137 -r 740a4c5d6641 lumpedsolver.tex
--- a/lumpedsolver.tex	Tue Mar 30 11:36:25 2010 -0700
+++ b/lumpedsolver.tex	Thu Apr 01 08:40:31 2010 -0700
@@ -73,10 +73,16 @@ so that we solve the system
   \matrix{A}_\mathit{diag} \vec{du} = \vec{r}_o, \\
   \vec{r}_0 = r(du=0,dl=0).
 \end{gather}
-For convenience we will drop the distinction between $r_o$ and $r$ and simply refer to $r_0$ as $r$, because we form the residual in the first iteration at a time step assuming $du=0$ and $dl=0$. Consider Lagrange multiplier vertex $k$ associated with the slip between conventional vertex $i$ on the ``negative'' side of the fault and conventional vertex $j$ on the ``positive'' side of the fault. The system of equations is in the form \begin{gather}
+For convenience we will drop the distinction between $r_o$ and $r$ and
+simply refer to $r_0$ as $r$, because we form the residual in the
+first iteration at a time step assuming $du=0$ and $dl=0$. Consider
+Lagrange multiplier vertex $k$ associated with the slip between
+conventional vertex $i$ on the ``negative'' side of the fault and
+conventional vertex $j$ on the ``positive'' side of the fault. The
+system of equations is in the form \begin{gather}
   A_i du_i - C^T_{ki} dl_k = r_i, \\
   A_j du_j + C^T_{kj} dl_k = r_j, \\
-  -C_{ki} du_i + C_{kj} du_j = d_k + C_{ki} u_i - C_{kj} u_j, \\
+  -R_{ki} du_i + C_{kj} du_j = d_k + C_{ki} u_i - C_{kj} u_j, \\
   C_{ki} = C_{kj},
 \end{gather}
 where $A_i$ is a diagonal matrix (3x3 in 3-D) associated with Jacobian
@@ -125,29 +131,29 @@ so that the sensitivity matrix, S, is fu
 \end{equation}
 \begin{align}
   S_{pp} &= 
-      C_{px}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{py}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{pz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{px}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{py}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{pz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{pq} &= 
-      C_{px}C_{qx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{py}C_{qy}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{pz}C_{qz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{px}R_{qx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{py}R_{qy}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{pz}R_{qz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{pr} &= 
-      C_{px}C_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{py}C_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{pz}C_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{px}R_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{py}R_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{pz}R_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{qq} &= 
-      C_{qx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{qy}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{qz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{qx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{qy}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{qz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{qr} &= 
-      C_{qx}C_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{qy}C_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{qz}C_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
+      R_{qx}R_{rx}\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{qy}R_{ry}\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{qz}R_{rz}\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right), \\
   S_{rr} &= 
-      C_{rx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
-      C_{ry}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
-      C_{rz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right).
+      R_{rx}^2\left(\frac{1}{A_{ix}}+\frac{1}{A_{jx}}\right) + 
+      R_{ry}^2\left(\frac{1}{A_{iy}}+\frac{1}{A_{jy}}\right) + 
+      R_{rz}^2\left(\frac{1}{A_{iz}}+\frac{1}{A_{jz}}\right).
 \end{align}
 \begin{gather}
 %
@@ -169,9 +175,9 @@ so that the sensitivity matrix, S, is fu
 
 \begin{equation}
   C_{ki} = \left( \begin{array}{ccc}
-      C_{px} & C_{py} & C_{pz} \\
-      C_{qx} & C_{qy} & C_{qz} \\
-      C_{rx} & C_{ry} & C_{rz}
+      R_{px} & R_{py} & R_{pz} \\
+      R_{qx} & R_{qy} & R_{qz} \\
+      R_{rx} & R_{ry} & R_{rz}
     \end{array} \right),
 \end{equation}
 where $pqr$ is the fault coordinate system and $xyz$ is the global



More information about the CIG-COMMITS mailing list