[cig-commits] commit: Small change in equation style.
Mercurial
hg at geodynamics.org
Tue Aug 30 17:15:30 PDT 2011
changeset: 57:d15fdc196d9a
tag: tip
user: Brad Aagaard <baagaard at usgs.gov>
date: Tue Aug 30 17:15:25 2011 -0700
files: faultRup.tex
description:
Small change in equation style.
diff -r 0c8f25441ab1 -r d15fdc196d9a faultRup.tex
--- a/faultRup.tex Tue Aug 30 16:13:05 2011 -0700
+++ b/faultRup.tex Tue Aug 30 17:15:25 2011 -0700
@@ -183,7 +183,7 @@ We solve the elasticity equation includi
- \tensor{\nabla} \cdot \tensor{\sigma} = \vec{0} \text{ in }V, \\
\tensor{\sigma} \cdot \vec{n} = \vec{T} \text{ on }S_T, \\
\vec{u} = \vec{u}_0 \text{ on }S_u, \\
- \vec{d} - \tensor{R} \left( \vec{u}^{+} - \vec{u}^{-}\right) = \vec{0}
+ \vec{d} - \tensor{R} \left( \vec{u}_{+} - \vec{u}_{-}\right) = \vec{0}
\text{ on }S_f,
\end{gather}
where $\vec{u}$ is the displacement vector, $\rho$ is the mass
@@ -228,7 +228,7 @@ relative to the motion on the negative s
relative to the motion on the negative side. Slip on the fault also
corresponds to equal and opposite tractions on the positive and
negative sides of the fault, which we impose using Lagrange
-multipliers with $\vec{l}^{+} - \vec{l}^{-} = 0$.
+multipliers with $\vec{l}_{+} - \vec{l}_{-} = 0$.
Recognizing that the tractions on the fault surface are analogous to
the boundary tractions, we add in the contributions from integrating
@@ -248,7 +248,7 @@ surface to zero,
surface to zero,
\begin{equation}
\int_{S_f} \vec{\phi} \cdot
- \left( \tensor{R}_T \vec{d} - \vec{u}^{+} + \vec{u}^{-} \right) \, dS = 0.
+ \left( \tensor{R}_T \vec{d} - \vec{u}_{+} + \vec{u}_{-} \right) \, dS = 0.
\end{equation}
The rotation matrix $\tensor{R}_T$ is the inverse of
$\tensor{R}$ and is composed of blocks that are the transpose of the
More information about the CIG-COMMITS
mailing list