[cig-commits] commit: Added missing table.

Mercurial hg at geodynamics.org
Wed Apr 25 14:13:21 PDT 2012


changeset:   110:d44d8f314286
tag:         tip
user:        Brad Aagaard <baagaard at usgs.gov>
date:        Wed Apr 25 14:12:57 2012 -0700
files:       faultRup.tex
description:
Added missing table.


diff -r b8d8625c5901 -r d44d8f314286 faultRup.tex
--- a/faultRup.tex	Wed Apr 25 14:02:44 2012 -0700
+++ b/faultRup.tex	Wed Apr 25 14:12:57 2012 -0700
@@ -953,7 +953,7 @@ faster convergence that the Additive Sch
 faster convergence that the Additive Schwarz method. We combine the
 field split preconditioner with the AMG preconditioner, such that we
 precondition the DOF for each global coordinate axis
-independently. Table~\ref{tab:iterates} shows the number of iterates
+independently. Table~\ref{tab:solvertest:preconditioner:iterates} shows the number of iterates
 required to solve a problem with prescribed slip on three faults
 \brad{Setup solver test for weak scaling computations or use
   strike-slip quasi-static benchmark? Add figure describing
@@ -1150,7 +1150,7 @@ avoid performing a line search in comput
 \label{sec:performance:benchmark}
 
 We compare the relative performance of the various preconditioners
-discussed in section~\ref{sec:solver:quasistatic} for quasi-static
+discussed in section~\ref{sec:solver:quasi-static} for quasi-static
 problems using a static simulation with three vertical, strike-slip
 faults. Using multiple, intersecting faults involves multiple saddle
 points, so it provides a more thorough test of the preconditioner
@@ -1174,7 +1174,7 @@ 1744 m to 456 m for the tetrahedral mesh
 1744 m to 456 m for the tetrahedral meshes.
 Figure~\ref{fig:solvertest:mesh} shows the 1744 m resolution
 tetrahedral mesh. As we will see in
-Section~\ref{src:verification:quasi-static}, the hexahedral mesh for a
+Section~\ref{sec:verification:quasi-static}, the hexahedral mesh for a
 given resolution is more accurate, so the errors in solution for each
 pair of meshes are significantly larger for the tetrahedral mesh.
 
@@ -1318,7 +1318,7 @@ 2\%. This provides high resolution at th
 2\%. This provides high resolution at the fault surface to resolve the
 small scale features of the rupture process with less resolution at
 the edges of the boundary where the solution is much
-smoother. Figure~\ref{tpv13-2d:mesh} shows the triangular mesh for a
+smoother. Figure~\ref{fig:tpv13-2d:mesh} shows the triangular mesh for a
 discretization size of 100 m on the fault.
 
 Rupture initiates due to a low static coefficient of friction in the
@@ -1435,6 +1435,8 @@ elastoplastic bulk rheology and slip-wea
   $T_n$ & scalar normal traction.\\
   $\mathbf{u}$ & displacement vector.\\
   $V$ & spatial domain of model.\\
+  $V_p$ & dilatational wave speed. \\
+  $V_s$ & shear wave speed.\\
   $\Delta t$ & Time step.\\
   $\mathbf{\phi}$ & weighting function.\\
   $\rho$ & mass density.\\
@@ -1726,7 +1728,7 @@ MGK acknowledges partial support from NS
   \multicolumn{2}{l}{Elastic properties} & \\
     & Vp & 5.774 km/s \\
     & Vs & 3.333 km/s \\
-    & density ($\rho$) & 2700. kg/m$^3$ \\
+    & Density ($\rho$) & 2700. kg/m$^3$ \\
   \multicolumn{2}{l}{Middle fault} & \\
     & Length & 39.19 km \\
     & Width & 12 km \\
@@ -1735,6 +1737,32 @@ MGK acknowledges partial support from NS
     & Length & 43.74 km \\
     & Width & 12 km \\
     & Slip & 0.5 m LL \\
+  \hline
+\end{tabular}
+\tablenotetext{a}{Simulation parameters for the performance benchmark
+  with three faults embedded in a volume domain as shown in
+  Figure~\ref{fig:solvertest:geometry}. We prescribe right-lateral
+  (RL) slip on the middle fault and left-lateral (LL) slip on the end faults.}
+\end{table}
+
+
+\begin{table}
+\caption{SCEC Benchmark TPV13 Parameters\tablenotemark{a}}
+\label{tab:tpv13:parameters}
+\centering
+\begin{tabular}{llc}
+  \hline
+  \multicolumn{2}{l}{Parameter} & Value \\
+  \hline
+  \multicolumn{2}{l}{Domain} & \\
+    & Length & 64 km \\
+    & Width & 48 km \\
+    & Height & 36 km \\
+    & Fault dip angle & 60 $\deg$ \\
+  \multicolumn{2}{l}{Elastic properties} & \\
+    & Vp & 5.716 km/s \\
+    & Vs & 3.300 km/s \\
+    & Density ($\rho$) & 2700. kg/m$^3$ \\
   \hline
 \end{tabular}
 \tablenotetext{a}{Simulation parameters for the performance benchmark



More information about the CIG-COMMITS mailing list