[cig-commits] commit: Very minor edits based on review 2.

Mercurial hg at geodynamics.org
Mon May 6 16:32:50 PDT 2013


changeset:   175:9162e3d712fc
tag:         tip
user:        Brad Aagaard <baagaard at usgs.gov>
date:        Mon May 06 16:32:45 2013 -0700
files:       faultRup.tex response_jgr2.tex
description:
Very minor edits based on review 2.


diff -r b045f86bf618 -r 9162e3d712fc faultRup.tex
--- a/faultRup.tex	Mon Feb 11 08:32:42 2013 -0800
+++ b/faultRup.tex	Mon May 06 16:32:45 2013 -0700
@@ -16,7 +16,7 @@
 
 % :SUBMIT:
 % Extract figures and captions from PDF file.
-% gs -dBATCH -dNOPAUSE -q -sDEVICE=pdfwrite -dFirstPage=50 -dLastPage=64 -sOUTPUTFILE=figures.pdf faultRup.pdf
+% gs -dBATCH -dNOPAUSE -q -sDEVICE=pdfwrite -dFirstPage=56 -dLastPage=70 -sOUTPUTFILE=figures.pdf faultRup.pdf
 
 
 % ======================================================================
@@ -349,16 +349,16 @@ with fault slip (sometimes called the ``
 with fault slip (sometimes called the ``stress-free strain''
 \citep{Aki:Richards:2002}). The total strain is the superposition of
 this effective plastic strain and the elastic strain. The fault
-tractions are associated with the total strain, not the effective
-plastic strain. This illustrates a key difference between this
-approach and the domain decomposition approach in which the Lagrange
-multipliers and the constraint equation directly relate the fault slip
-to the fault tractions (Lagrange multipliers). One implication of this
-difference is that when using double couple point forces, the body
-forces driving slip depend on the elastic modulii and will differ
-across a fault surface with a contrast in the elastic modulii, whereas
-the fault tractions (Lagrange multipliers) in the domain decomposition
-approach will be equal in magnitude across the fault.
+tractions are associated with the elastic strain. This illustrates a
+key difference between this approach and the domain decomposition
+approach in which the Lagrange multipliers and the constraint equation
+directly relate the fault slip to the fault tractions (Lagrange
+multipliers). One implication of this difference is that when using
+double couple point forces, the body forces driving slip depend on the
+elastic modulii and will differ across a fault surface with a contrast
+in the elastic modulii, whereas the fault tractions (Lagrange
+multipliers) in the domain decomposition approach will be equal in
+magnitude across the fault.
 
 We express the weighting function $\pmb{\phi}$, trial solution
 $\bm{u}$, Lagrange multipliers $\bm{l}$, and fault slip $\bm{d}$ as
@@ -559,12 +559,12 @@ The matrix $\bm{L}$ defined in
 The matrix $\bm{L}$ defined in
 equation~(\ref{eqn:jacobian:constraint}) is spectrally equivalent to
 the identity, because it involves integration of products of the basis
-functions. This makes the traditional LBB stability criterion
-\citep{Brenner:Scott:2008} trivial to satisfy by choosing the space of
-Lagrange multipliers to be exactly the space of displacements,
-restricted to the fault. This means we simply need to know the distance
-between any pair of vertices spanning the fault, which can be
-expressed as a relative displacement, i.e., fault slip.
+functions. This makes the traditional Ladyzhenskaya-Babuska-Brezzi
+(LBB) stability criterion \citep{Brenner:Scott:2008} trivial to satisfy by
+choosing the space of Lagrange multipliers to be exactly the space of
+displacements, restricted to the fault. This means we simply need to
+know the distance between any pair of vertices spanning the fault,
+which can be expressed as a relative displacement, i.e., fault slip.
 
 % ------------------------------------------------------------------
 \subsection{Dynamic Simulations}
@@ -1316,7 +1316,7 @@ weighting the cohesive cells the same as
 weighting the cohesive cells the same as conventional bulk cells while
 partitioning. In this performance benchmark matrix-vector
 multiplication (the PETSc \texttt{MatMult} function) has a load
-imbalance of up to 20\% on 96 cores The cell partition balances
+imbalance of up to 20\% on 96 cores.  The cell partition balances
 the number of cells across the processes using ParMetis
 \citep{Karypis:etal:1999} to achieve good balance for the
 finite element integration. This does not take into account a
@@ -1508,6 +1508,10 @@ include inertial terms and time stepping
 include inertial terms and time stepping is done via a series of
 static problems so that the temporal accuracy depends only on the
 temporal variation of the boundary conditions and constitutive models.
+These benchmarks simulations can be run on a laptop or desktop
+computer. For example, the high resolution benchmarks took 46 min
+(hexahedral cells) and 36 min (tetrahedral cells) using four processes
+on a dual quad core desktop computer with Intel Xeon E5630 processors.
 
 Figure~\ref{fig:savage:prescott:profiles} compares the numerical
 results extracted on the ground surface along the center of the model
@@ -1586,19 +1590,25 @@ include fluid pressure, we instead formu
 include fluid pressure, we instead formulate the simulation parameters
 in terms of effective stresses.
 
+The TPV13-2D simulations require a small fraction of the computational
+resources needed for the TPV13 3-D simulations and run quickly on a
+laptop or desktop computer. The 50 m resolution cases took 62 s
+(triangular cells) and 120 s (quadrilateral cells) using 8 processes
+on a dual quad core desktop computer with Intel Xeon E5630 processors.
 Figure~\ref{fig:tpv13-2d:stress:slip}(b) displays the final slip
 distribution in the TPV13-2D simulation with triangular cells at a
 resolution of 100 m. The large dynamic stress drop and supershear
 rupture generate 20 m of slip at a depth of about 7
-km. Figure~\ref{fig:tpv13-2d:slip:rate}(a)--(d) demonstrates the convergence
-of the solution as the discretization size decreases as evident in
-the normal faulting component of fault slip rate time histories. For a
-resolution of 200 m on the fault, the solution contains some
-high-frequency oscillation due to insufficient resolution of the
-cohesive zone \citep{Rice:1993}. The finer meshes provide sufficient
-resolution of the cohesive zone so there is very little high-frequency
-oscillation in the slip rate time histories. The triangular cells
-generate less oscillation compared with quadrilateral cells.
+km. Figure~\ref{fig:tpv13-2d:slip:rate}(a)--(d) demonstrates the
+convergence of the solution as the discretization size decreases as
+evident in the normal faulting component of fault slip rate time
+histories. For a resolution of 200 m on the fault, the solution
+contains some high-frequency oscillation due to insufficient
+resolution of the cohesive zone \citep{Rice:1993}. The finer meshes
+provide sufficient resolution of the cohesive zone so there is very
+little high-frequency oscillation in the slip rate time histories. The
+triangular cells generate less oscillation compared with quadrilateral
+cells.
 
 In this benchmark without an analytical solution, as in all of the
 exercises in the SCEC spontaneous rupture benchmark suite, we rely on
@@ -1614,11 +1624,15 @@ variations in the amount of numerical da
 variations in the amount of numerical damping used in the various
 codes.
 
-The results for the 3-D version of the TPV13 benchmark yield
-similar results. Figure~\ref{fig:tpv13:rupture:time}(a) shows the same
-trends in rupture speed with discretization size that we observed in
-the 2-D version. In both cases models with insufficient resolution to
-resolve the cohesive zone propagate slightly slower than models with
+The 3-D version of the TPV13 benchmark yields similar results but
+requires greater computational resources. The simulations with a
+discretization size of 100 m took 2.5 hours using 64 processes (8
+compute nodes with 8 processes per dual quad core compute node) on a
+cluster with Intel Xeon E5620 processors.
+Figure~\ref{fig:tpv13:rupture:time}(a) shows the same trends in
+rupture speed with discretization size that we observed in the 2-D
+version. In both cases models with insufficient resolution to resolve
+the cohesive zone propagate slightly slower than models with
 sufficient resolution. In this case the differences between the
 rupture times for the 200 m and 100 m resolution tetrahedral meshes
 are less than 0.1 seconds over the entire fault surface. Comparing the
@@ -1736,9 +1750,424 @@ rupture propagation.
 
 % ------------------------------------------------------------------
 % :SUBMIT: comment out
-\bibliography{references}
-\bibliographystyle{agufull08}
+%\bibliography{references}
+%\bibliographystyle{agufull08}
 % paste .bbl file HERE.
+\begin{thebibliography}{66}
+\providecommand{\natexlab}[1]{#1}
+\expandafter\ifx\csname urlstyle\endcsname\relax
+  \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else
+  \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup
+  \urlstyle{rm}\Url}\fi
+
+\bibitem[{\textit{Aagaard et~al.}(2012)\textit{Aagaard, Kientz, Knepley, ,
+  Strand, and Williams}}]{PyLith:manual:1.7.1}
+Aagaard, B., S.~Kientz, M.~Knepley, , L.~Strand, and C.~Williams (2012),
+  \textit{PyLith User Manual, Version 1.7.1}, Computational Infrastructure for
+  Geodynamics (CIG), University of California, Davis,
+  http://www.geodynamics.org/cig/software/pylith/pylith\_manual-1.7.1.pdf.
+
+\bibitem[{\textit{Aagaard et~al.}(2001)\textit{Aagaard, Heaton, and
+  Hall}}]{Aagaard:etal:BSSA:2001}
+Aagaard, B.~T., T.~H. Heaton, and J.~F. Hall (2001), Dynamic earthquake
+  ruptures in the presence of lithostatic normal stresses: Implications for
+  friction models and heat production, \textit{Bulletin of the Seismological
+  Society of America}, \textit{91}(6), 1765--1796, \doi{10.1785/0120000257}.
+
+\bibitem[{\textit{Aki and Richards}(2002)}]{Aki:Richards:2002}
+Aki, K., and P.~G. Richards (2002), \textit{Quantitative {Seismology}},
+  University Science Books, Sausalito, California.
+
+\bibitem[{\textit{Andrews}(1999)}]{Andrews:1999}
+Andrews, D.~J. (1999), Test of two methods for faulting in finite- difference
+  calculations, \textit{Bulletin of the Seismological Society of America},
+  \textit{89}(4), 931--937.
+
+\bibitem[{\textit{Andrews}(2004)}]{Andrews:2004}
+Andrews, D.~J. (2004), Rupture calculations with dynamically-determined
+  slip-weakening friction, \textit{Bulletin of the Seismological Society of
+  America}, \textit{94}(3), 769--775, \doi{10.1785/0120030142}.
+
+\bibitem[{\textit{Andrews et~al.}(2007)\textit{Andrews, Hanks, and
+  Whitney}}]{Andrews:etal:2007}
+Andrews, D.~J., T.~C. Hanks, and J.~W. Whitney (2007), Physical limits on
+  ground motion at {Yucca} {Mountain}, \textit{Bulletin of the Seismological
+  Society of America}, \textit{97}(6), 1771--1792, \doi{10.1785/0120070014}.
+
+\bibitem[{\textit{Balay et~al.}(1997)\textit{Balay, Gropp, McInnes, and
+  Smith}}]{PETSC:efficient}
+Balay, S., W.~D. Gropp, L.~C. McInnes, and B.~F. Smith (1997), Efficient
+  management of parallelism in object oriented numerical software libraries, in
+  \textit{Modern Software Tools in Scientific Computing}, edited by E.~Arge,
+  A.~M. Bruaset, and H.~P. Langtangen, pp. 163--202, Birkh{\"{a}}user Press.
+
+\bibitem[{\textit{Balay et~al.}(2010)\textit{Balay, Brown, Buschelman, Gropp,
+  Kaushik, Knepley, McInnes, Smith, and Zhang}}]{PETSc:manual}
+Balay, S., J.~Brown, K.~Buschelman, W.~D. Gropp, D.~Kaushik, M.~G. Knepley,
+  L.~C. McInnes, B.~F. Smith, and H.~Zhang (2010), {PETSc} users manual,
+  \textit{Tech. Rep. ANL-95/11 - Revision 3.1}, Argonne National Laboratory,
+  http://www.mcs.anl.gov/petsc.
+
+\bibitem[{\textit{Barall}(2009)}]{Barall:2009}
+Barall, M. (2009), A grid-doubling finite-element technique for calculating
+  dynamic three-dimensional spontaneous rupture on an earthquake fault,
+  \textit{Geophysical Journal International}, \textit{178}, 845--859,
+  \doi{10.1111/j.1365-246X.2009.04190.x}.
+
+\bibitem[{\textit{Barbot et~al.}(2012)\textit{Barbot, Lapusta, and
+  Avouac}}]{Barbot:etal:2012}
+Barbot, S., N.~Lapusta, and J.-P. Avouac (2012), Under the hood of the
+  earthquake machine: {Toward} predictive modeling of the seismic cycle,
+  \textit{Science}, \textit{336}(6082), 707--710,
+  \doi{10.1126/science.1218796}.
+
+\bibitem[{\textit{Bathe}(1995)}]{Bathe:1995}
+Bathe, K.-J. (1995), \textit{Finite-Element Procedures}, Prentice Hall, Upper
+  Saddle River, New Jersey.
+
+\bibitem[{\textit{Bizzarri and Cocco}(2005)}]{Bizzarri:Cocco:2005}
+Bizzarri, A., and M.~Cocco (2005), {3D} dynamic simulations of spontaneous
+  rupture propagation governed by different constitutive laws with rake
+  rotation allowed, \textit{Annals of Geophysics}, \textit{48}(2),
+  \doi{10.4401/ag-3201}.
+
+\bibitem[{\textit{Brenner and Scott}(2008)}]{Brenner:Scott:2008}
+Brenner, S.~C., and L.~R. Scott (2008), \textit{The Mathematical Theory of
+  Finite Element Methods}, Texts in Applied Mathematics, 3rd ed., Springer, New
+  York, New York.
+
+\bibitem[{\textit{Brown et~al.}(2012)\textit{Brown, Smoth, and
+  Ahmadia}}]{brown2012tmeice}
+Brown, J., B.~F. Smoth, and A.~Ahmadia (2012), Achieving textbook multigrid
+  efficiency for hydrostatic ice flow, \textit{SIAM Journal on Scientific
+  Computing}, accepted for publication.
+
+\bibitem[{\textit{Brune}(1970)}]{Brune:1970}
+Brune, J.~N. (1970), Tectonic stress and spectra of seismic shear waves from
+  earthquakes, \textit{Journal of Geophysical Research}, \textit{75},
+  4997--5009.
+
+\bibitem[{\textit{Chen and Lapusta}(2009)}]{Chen:Lapusta:2009}
+Chen, T., and N.~Lapusta (2009), Scaling of small repeating earthquakes
+  explained by interaction of seismic and aseismic slip in a rate and state
+  fault model, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{114}(B01311), \doi{10.1029/2008JB005749}.
+
+\bibitem[{\textit{Chlieh et~al.}(2007)\textit{Chlieh, Avouac, Hjorleifsdottir1,
+  Song, Ji, Sieh, Sladen, Herbert, Prawirodirdjo, Bock, and
+  Galetzka}}]{Chlieh:etal:2007}
+Chlieh, M., J.-P. Avouac, V.~Hjorleifsdottir1, R.-R.~A. Song, C.~Ji, K.~Sieh,
+  A.~Sladen, H.~Herbert, L.~Prawirodirdjo, Y.~Bock, and J.~Galetzka (2007),
+  Coseismic slip and afterslip of the great {Mw} 9.15 {Sumatra-Andaman}
+  earthquake of 2004, \textit{Bulletin of the Seismological Society of
+  America}, \textit{97}(1A), S152--S173, \doi{10.1785/0120050631}.
+
+\bibitem[{\textit{Courant et~al.}(1967)\textit{Courant, Friedrichs, and
+  Lewy}}]{Courant:etal:1967}
+Courant, R., K.~Friedrichs, and H.~Lewy (1967), On the partial difference
+  equations of mathematical physics, \textit{IBM Journal of Research and
+  Development}, \textit{11}(2), 215--234, english translation of the original
+  1928 paper published in {\it Mathematische Annalen}.
+
+\bibitem[{\textit{Dalguer and Day}(2007)}]{Dalguer:Day:2007}
+Dalguer, L.~A., and S.~M. Day (2007), Staggered-grid split-node method for
+  spontaneous rupture simulation, \textit{Journal of Geophysical Research:
+  Solid Earth}, \textit{112}(B02302), \doi{10.1029/2006JB004467}.
+
+\bibitem[{\textit{Day et~al.}(2005)\textit{Day, Dalguer, Lapusta, and
+  Liu}}]{Day:etal:2005}
+Day, S.~M., L.~A. Dalguer, N.~Lapusta, and Y.~Liu (2005), Comparison of finite
+  difference and boundary integral solutions to three-dimensional spontaneous
+  rupture, \textit{Journal of Geophysical Research}, \textit{110}(B09317),
+  \doi{10.1029/2007JB005553}.
+
+\bibitem[{\textit{Dieterich}(1979)}]{Dieterich:1979}
+Dieterich, J.~H. (1979), Modeling of rock friction, 1. {Experimental} results
+  and constitutive equations, \textit{Journal of Geophysical Research: Solid
+  Earth}, \textit{84}(B5), 2161--2168.
+
+\bibitem[{\textit{Dieterich and
+  Richards-Dinger}(2010)}]{Dieterich:Richards-Dinger:2010}
+Dieterich, J.~H., and K.~B. Richards-Dinger (2010), Earthquake recurrence in
+  simulated fault systems, \textit{Pure and Applied Geophysics},
+  \textit{167}(8--9), 1087--1104, \doi{10.1007/s00024-010-0094-0}.
+
+\bibitem[{\textit{Duan and Oglesby}(2005)}]{Duan:Oglesby:2005}
+Duan, B., and D.~D. Oglesby (2005), Multicycle dynamics of nonplanar
+  strike-slip faults, \textit{Journal of Geophysical Research},
+  \textit{110}(B12), B03304, \doi{10.1029/2004JB003298}.
+
+\bibitem[{\textit{Dunham and Archuleta}(2004)}]{Dunham:Archuleta:2004}
+Dunham, E.~M., and R.~J. Archuleta (2004), Evidence for a supershear transient
+  during the 2002 {Denali} earthquake, \textit{Bulletin of the Seismological
+  Society of America}, \textit{68}(6B), S256--S268, \doi{10.1785/0120040616}.
+
+\bibitem[{\textit{Dunham et~al.}(2011)\textit{Dunham, Belanger, Cong, and
+  Kozdon}}]{Dunham:etal:2011}
+Dunham, E.~M., D.~Belanger, L.~Cong, and J.~E. Kozdon (2011), Earthquake
+  ruptures with strongly rate-weakening friction and off-fault plasticity:
+  {Planar} faults, \textit{Bulletin of the Seismological Society of America},
+  \textit{101}(5), 2308--2322, \doi{10.1785/0120100075}.
+
+\bibitem[{\textit{Harris and Day}(1999)}]{Harris:Day:1999}
+Harris, R.~A., and S.~M. Day (1999), Dynamic 3-{D} simulations of earthquakes
+  on en echelon faults, \textit{Geophysical Research Letters}, \textit{26}(14),
+  2089--2092.
+
+\bibitem[{\textit{Harris et~al.}(2009)\textit{Harris, Barall, Archuleta,
+  Dunham, Aagaard, Ampuero, Bhat, Cruz-Atienza, Dalguer, Dawson, Day, Duan,
+  Ely, Kase, Lapusta, Liu, Ma, Oglesby, Olsen, Pitarka, Song, and
+  Templeton}}]{Harris:etal:SRL:2009}
+Harris, R.~A., M.~Barall, R.~Archuleta, E.~Dunham, B.~Aagaard, J.~P. Ampuero,
+  H.~Bhat, V.~Cruz-Atienza, L.~Dalguer, P.~Dawson, S.~Day, B.~Duan, G.~Ely,
+  Y.~Kase, N.~Lapusta, Y.~Liu, S.~Ma, D.~Oglesby, K.~Olsen, A.~Pitarka,
+  S.~Song, and E.~Templeton (2009), The {SCEC}/{USGS} dynamic earthquake
+  rupture code verification exercise, \textit{Seismological Research Letters},
+  \textit{80}(1), 119--126, \doi{10.1785/gssrl.80.1.119}.
+
+\bibitem[{\textit{Harris et~al.}(2011)\textit{Harris, Barall, Andrews, Duan,
+  Ma, Dunham, Gabriel, Kaneko, Kase, Aagaard, Oglesby, Ampuero, Hanks, and
+  Abrahamson}}]{Harris:etal:SRL:2011}
+Harris, R.~A., M.~Barall, D.~J. Andrews, B.~Duan, S.~Ma, E.~M. Dunham, A.~A.
+  Gabriel, Y.~Kaneko, Y.~Kase, B.~T. Aagaard, D.~D. Oglesby, J.~P. Ampuero,
+  T.~C. Hanks, and N.~Abrahamson (2011), Verifying a computational method for
+  predicting extreme ground motion, \textit{Seismological Research Letters},
+  \textit{82}(5), 638--644, \doi{10.1785/gssrl.82.5.638}.
+
+\bibitem[{\textit{Hillers et~al.}(2006)\textit{Hillers, Ben-Zion, and
+  Mai}}]{Hillers:etal:2006}
+Hillers, G., Y.~Ben-Zion, and P.~M. Mai (2006), Seismicity on a fault with
+  rate- and state-dependent friction and spatial variations of the critical
+  slip distance, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{111}(B01403), \doi{10.1029/2005JB003859}.
+
+\bibitem[{\textit{Hunter}(2007)}]{matplotlib}
+Hunter, J.~D. (2007), Matplotlib: A 2d graphics environment, \textit{Computing
+  In Science \& Engineering}, \textit{9}(3), 90--95.
+
+\bibitem[{\textit{Ida}(1972)}]{Ida:1972}
+Ida, Y. (1972), Cohesive force across the tip of a longitudinal-shear crack and
+  {G}riffith's specific surface energy, \textit{Journal of Geophysical
+  Research}, \textit{77}(20), 3796--3805.
+
+\bibitem[{\textit{Igarashi et~al.}(2003)\textit{Igarashi, Matsuzawa, and
+  Hasegawa}}]{Igarashi:etal:2003}
+Igarashi, T., T.~Matsuzawa, and A.~Hasegawa (2003), Repeating earthquakes and
+  interplate aseismic slip in the northeastern {Japan} subduction zone,
+  \textit{Journal of Geophysical Research: Solid Earth}, \textit{108}(B5),
+  \doi{10.1029/2002JB001920}.
+
+\bibitem[{\textit{Ito et~al.}(2007)\textit{Ito, Obara, Shiomi, Sekine, and
+  Hirose}}]{Ito:etal:2007}
+Ito, Y., K.~Obara, K.~Shiomi, S.~Sekine, and H.~Hirose (2007), Slow earthquakes
+  coincident with episodic tremors and slow slip events, \textit{Science},
+  \textit{315}(315), 503--506, \doi{10.1126/science.1134454}.
+
+\bibitem[{\textit{Kaneko et~al.}(2008)\textit{Kaneko, Lapusta, and
+  Ampuero}}]{Kaneko:etal:2008}
+Kaneko, Y., N.~Lapusta, and J.-P. Ampuero (2008), Spectral element modeling of
+  spontaneous earthquake rupture on rate and state faults: {Effect} of
+  velocity-strengthening friction at shallow depths, \textit{Journal of
+  Geophysical Research}, \textit{113}(B09317), \doi{10.1029/2007JB005553}.
+
+\bibitem[{\textit{Kaneko et~al.}(2011)\textit{Kaneko, Ampuero, and
+  Lapusta}}]{Kaneko:etal:2011}
+Kaneko, Y., J.-P. Ampuero, and N.~Lapusta (2011), Spectral-element simulations
+  of long-term fault slip: {Effect} of low-rigidity layers on earthquake-cycle
+  dynamics, \textit{Journal of Geophysical Research}, \textit{116}(B10313),
+  18pp, \doi{10.1029/2011JB008395}.
+
+\bibitem[{\textit{Karypis et~al.}(1999)\textit{Karypis, Aggarwal, Kumar, and
+  Shekhar}}]{Karypis:etal:1999}
+Karypis, G., R.~Aggarwal, V.~Kumar, and S.~Shekhar (1999), Multilevel
+  hypergraph partitioning: Applications in {VLSI} domain, \textit{IEEE
+  Transactions on Very Large Scale Integration (VLSI) Systems}, \textit{7}(1),
+  69--79.
+
+\bibitem[{\textit{Kaushik et~al.}(2009)\textit{Kaushik, Smith, Wollaber, Smith,
+  Siegel, and Yang}}]{GordonBell09}
+Kaushik, D., M.~Smith, A.~Wollaber, B.~Smith, A.~Siegel, and W.~S. Yang (2009),
+  Enabling high fidelity neutron transport simulations on petascale
+  architectures, in \textit{ACM/IEEE Proceedings of SC2009: High Performance
+  Networking and Computing}.
+
+\bibitem[{\textit{Knepley and Karpeev}(2009)}]{Knepley:Karpeev:2009}
+Knepley, M.~G., and D.~A. Karpeev (2009), Mesh algorithms for {PDE} with
+  {Sieve} {I}: {Mesh} distribution, \textit{Scientific Programming},
+  \textit{17}(3), 215--230, \doi{10.3233/SPR-2009-0249}.
+
+\bibitem[{\textit{Komatitsch and Vilotte}(1998)}]{Komatitsch:Vilotte:1998}
+Komatitsch, D., and J.~P. Vilotte (1998), The spectral element method: {An}
+  efficient tool to simulate the seismic response of 2d and 3d geological
+  structures, \textit{Bulletin of the Seismological Society of America},
+  \textit{88}(2), 368--392.
+
+\bibitem[{\textit{Langbein et~al.}(2006)\textit{Langbein, Murray, and
+  Snyder}}]{Langbein:etal:2006}
+Langbein, J., J.~R. Murray, and H.~A. Snyder (2006), Coseismic and initial
+  postseismic deformation from the 2004 {Parkfield}, {California}, earthquake,
+  observed by global positioning system, electronic distance meter,
+  creepmeters, and borehole strainmeters, \textit{Bulletin of the Seismological
+  Society of America}, \textit{96}(4B), S304--S320, \doi{10.1785/0120050823}.
+
+\bibitem[{\textit{Liu et~al.}(2006)\textit{Liu, Archuleta, and
+  Hartzell}}]{Liu:etal:2006}
+Liu, P., R.~J. Archuleta, and S.~H. Hartzell (2006), Prediction of broadband
+  ground-motion time histories: {Hybrid} low/high- frequency method with
+  correlated random source parameters, \textit{Bulletin of the Seismological
+  Society of America}, \textit{96}(6), 2118--2130, \doi{10.1785/0120060036}.
+
+\bibitem[{\textit{Ma}(2009)}]{Ma:2009}
+Ma, S. (2009), Distinct asymmetry in rupture-induced inelastic strain across
+  dipping faults: {An} off-fault yielding model, \textit{Geophysical Research
+  Letters}, \textit{36}(L20317), \doi{10.1029/2009GL040666}.
+
+\bibitem[{\textit{Ma and Andrews}(2010)}]{Ma:Andrews:2010}
+Ma, S., and D.~J. Andrews (2010), Inelastic off-fault response and
+  three-dimensional earthquake rupture dynamics on a strikeslip fault,
+  \textit{Journal of Geophysical Research}, \textit{115}, B04,304,
+  \doi{10.1029/2009JB006382}.
+
+\bibitem[{\textit{Matsuzawa et~al.}(2010)\textit{Matsuzawa, Hirose, Shibazaki,
+  and Obara}}]{Matsuzawa:etal:2010}
+Matsuzawa, T., H.~Hirose, B.~Shibazaki, and K.~Obara (2010), Modeling short-
+  and long-term slow slip events in the seismic cycles of large subduction
+  earthquakes, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{115}(B12), \doi{10.1029/2010JB007566}.
+
+\bibitem[{\textit{Melosh and Raefsky}(1980)}]{Melosh:Raefsky:1980}
+Melosh, J., and A.~Raefsky (1980), The dynamical origin of subduction zone
+  topography, \textit{Geophysical Journal of the Royal Astronomical Society},
+  \textit{60}(3), 333--354, \doi{10.1111/j.1365-246X.1980.tb04812.x}.
+
+\bibitem[{\textit{Melosh and Raefsky}(1981)}]{Melosh:Raefsky:1981}
+Melosh, J., and A.~Raefsky (1981), A simple and efficient method for
+  introducing faults into finite element computations, \textit{Bulletin of the
+  Seismological Society of America}, \textit{71}(5), 1391--1400.
+
+\bibitem[{\textit{Mikumo et~al.}(1998)\textit{Mikumo, Miyatake, and
+  Santoyo}}]{Mikumo:etal:1998}
+Mikumo, T., T.~Miyatake, and M.~A. Santoyo (1998), Dynamic rupture of
+  asperities and stress change during a sequence of large interplate
+  earthquakes in the mexican subduction zone, \textit{Bulletin of the
+  Seismological Society of America}, \textit{88}(3), 686--702.
+
+\bibitem[{\textit{Mills et~al.}(2010)\textit{Mills, Sripathi, Mahinthakumar,
+  Hammond, Lichtner, and Smith}}]{msmhls2010}
+Mills, R.~T., V.~Sripathi, G.~Mahinthakumar, G.~Hammond, P.~C. Lichtner, and
+  B.~F. Smith (2010), Engineering {PFLOTRAN} for scalable performance on {Cray}
+  {XT} and {IBM} {BlueGene} architectures, in \textit{Proceedings of SciDAC
+  2010 Annual Meeting}.
+
+\bibitem[{\textit{Moczo et~al.}(2007)\textit{Moczo, Robertsson, and
+  Eisner}}]{Moczo:etal:2007}
+Moczo, P., O.~A. Robertsson, and L.~Eisner (2007), The finite-difference
+  time-domain method for modeling of seismic wave propagation, in
+  \textit{Advances in Wave Propagation in Heterogenous Earth}, \textit{Advances
+  in Geophysics}, vol.~48, pp. 421--516, Elsevier,
+  \doi{10.1016/S0065-2687(06)48008-0}.
+
+\bibitem[{\textit{Newmark}(1959)}]{Newmark:1959}
+Newmark, N.~M. (1959), A method of computation for structural dynamics,
+  \textit{Journal of Engineering Mechanics}, \textit{85}(EM3), 67--94.
+
+\bibitem[{\textit{Oglesby and Day}(2001)}]{Oglesby:Day:2001}
+Oglesby, D.~D., and S.~M. Day (2001), Fault geometry and the dynamics of the
+  1999 {Chi-Chi} {(Taiwan)} earthquake, \textit{Bulletin of the Seismological
+  Society of America}, \textit{91}(5), 1099--1111, \doi{10.1785/0120000714}.
+
+\bibitem[{\textit{Peyrat et~al.}(2001)\textit{Peyrat, Olsen, and
+  Madariaga}}]{Peyrat:etal:2001}
+Peyrat, S., K.~Olsen, and R.~Madariaga (2001), Dynamic modeling of the 1992
+  {Landers} earthquake, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{106}(B11), 26,467--26,482, \doi{10.1029/2001JB000205}.
+
+\bibitem[{\textit{Pollitz and Schwartz}(2008)}]{Pollitz:Schwartz:2008}
+Pollitz, F.~F., and D.~P. Schwartz (2008), Probabilistic seismic hazard in the
+  {San} {Francisco} {Bay} area based on a simplified viscoelastic cycle model
+  of fault interactions, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{113}(B05409), \doi{10.1029/2007JB005227}.
+
+\bibitem[{\textit{Pollitz et~al.}(2001)\textit{Pollitz, Wicks, and
+  Thatcher}}]{Pollitz:etal:2001}
+Pollitz, F.~F., C.~Wicks, and W.~Thatcher (2001), Mantle flow beneath a
+  continental strike-slip fault: {Postseismic} deformation after the 1999
+  {Hector} {Mine} earthquake, \textit{Science}, \textit{293}(5536), 1814--1818,
+  \doi{10.1126/science.1061361}.
+
+\bibitem[{\textit{Reilinger et~al.}(2000)\textit{Reilinger, Ergintav, Burgmann,
+  McClusky, Lenk, Barka, Gurkan, Hearn, Feigle, Cakmak, Aktug, Ozener, and
+  Toksoz}}]{Reilinger:etal:2000}
+Reilinger, R.~E., S.~Ergintav, R.~Burgmann, S.~McClusky, O.~Lenk, A.~Barka,
+  O.~Gurkan, L.~Hearn, K.~L. Feigle, R.~Cakmak, B.~Aktug, H.~Ozener, and M.~N.
+  Toksoz (2000), Coseismic and postseismic fault slip for the 17 {August} 1999,
+  {M} = 7.5, {Izmit}, {Turkey} earthquake, \textit{Science},
+  \textit{289}(5484), 1519--1524, \doi{10.1126/science.289.5484.1519}.
+
+\bibitem[{\textit{Rice}(1993)}]{Rice:1993}
+Rice, J.~R. (1993), Spatiotemporal complexity of slip on a fault,
+  \textit{Journal of Geophysical Research}, \textit{98}(B6), 9885--9907.
+
+\bibitem[{\textit{Robinson and Benites}(1995)}]{Robinson:Benites:1995}
+Robinson, R., and R.~Benites (1995), Synthetic seismicity models of multiple
+  interacting faults, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{100}(B9), 18,229--18,238, \doi{10.1029/95JB01569}.
+
+\bibitem[{\textit{Rundle et~al.}(2006)\textit{Rundle, Rundle, Tiampo,
+  Donnellan, and Turcotte}}]{Rundle:etal:2006}
+Rundle, P.~B., J.~B. Rundle, K.~F. Tiampo, A.~Donnellan, and D.~L. Turcotte
+  (2006), Virtual {California}: {Fault} model, friction parameters,
+  applications, \textit{Pure and Applied Geophysics}, \textit{163}(9),
+  1819--1846, \doi{10.1007/s00024-006-0099-x}.
+
+\bibitem[{\textit{Saad}(2003)}]{Saad03}
+Saad, Y. (2003), \textit{Iterative Methods for Sparse Linear Systems}, 2nd ed.,
+  SIAM, Philadelphia, Pennsylvania.
+
+\bibitem[{\textit{Sala et~al.}(2004)\textit{Sala, Hu, and
+  Tuminaro}}]{ML:users:guide}
+Sala, M., J.~J. Hu, and R.~S. Tuminaro (2004), {ML}3.1 {Smoothed} {Aggregation}
+  {User}'s {Guide}, \textit{Tech. Rep. SAND2004-4821}, Sandia National
+  Laboratories, Albuquerque, NM (USA).
+
+\bibitem[{\textit{Savage and Prescott}(1978)}]{Savage:Prescott:1978}
+Savage, J.~C., and W.~H. Prescott (1978), Asthenosphere readjustment and the
+  earthquake cycle, \textit{Journal of Geophysical Research}, \textit{83}(B7),
+  3369--3376, \doi{10.1029/JB083iB07p03369}.
+
+\bibitem[{\textit{Smith et~al.}(1996)\textit{Smith, Bj{\o}rstad, and
+  Gropp}}]{Smith:etal:1996}
+Smith, B.~F., P.~Bj{\o}rstad, and W.~D. Gropp (1996), \textit{Domain
+  Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential
+  Equations}, Cambridge University Press, http://www.mcs.anl.gov/\~{
+  }bsmith/ddbook.html.
+
+\bibitem[{\textit{Smith et~al.}(2008)\textit{Smith, Rabiti, Kaushik, Smith,
+  Yang, and Palmiotti}}]{srksyp2008}
+Smith, M.~A., C.~Rabiti, D.~Kaushik, B.~Smith, W.~S. Yang, and G.~Palmiotti
+  (2008), Fast reactor core simulations using the {UNIC} code, in
+  \textit{Proceedings of the International Conference on the Physics of
+  Reactors, Nuclear Power: A Sustainable Resource}.
+
+\bibitem[{\textit{Ward}(1992)}]{Ward:1992}
+Ward, S.~N. (1992), An application of synthetic seismicity in earthquake
+  statistics: {The} {Middle} {America} {Trench}, \textit{Journal of Geophysical
+  Research: Solid Earth}, \textit{97}(B5), 6675--6682, \doi{10.1029/92JB00236}.
+
+\bibitem[{\textit{Williams and Richardson}(1991)}]{Williams:Richardson:1991}
+Williams, C.~A., and R.~M. Richardson (1991), A rheologically layered
+  three-dimensional model of the {San} {Andreas} {Fault} in central and
+  southern {California}, \textit{Journal of Geophysical Research: Solid Earth},
+  \textit{96}(B10), 16,597--16,623, \doi{10.1029/91JB01484}.
+
+\bibitem[{\textit{Zienkiewicz et~al.}(2005)\textit{Zienkiewicz, Taylor, and
+  Zhu}}]{Zienkiewicz:etal:2005}
+Zienkiewicz, O.~C., R.~L. Taylor, and J.~Z. Zhu (2005), \textit{The
+  Finite-Element Method: Its Basis and Fundamentals}, 6th ed., Elsevier
+  Butterworth-Heinemann, Burlington, Massachusetts.
+
+\end{thebibliography}
+
 
 % ------------------------------------------------------------------
 % FIGURES
@@ -1966,7 +2395,7 @@ rupture propagation.
 % TABLES
 % ------------------------------------------------------------------
 \begin{table}
-%\scriptsize % :SUBMIT:
+\scriptsize % :SUBMIT:
   \caption{Example Preconditioners for the Saddle Point Problem in
     Equation~(\ref{eqn:saddle:point})\tablenotemark{a}}
   \label{tab:preconditioner:options}
@@ -2089,7 +2518,7 @@ rupture propagation.
 
 
 \begin{table}
-%\scriptsize % :SUBMIT:
+\scriptsize % :SUBMIT:
 \caption{Performance Benchmark Memory System Evaluation\tablenotemark{a}}
 \label{tab:solvertest:memory:events}
 \centering
diff -r b045f86bf618 -r 9162e3d712fc response_jgr2.tex
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/response_jgr2.tex	Mon May 06 16:32:45 2013 -0700
@@ -0,0 +1,97 @@
+%-*- TeX -*-
+%
+% ----------------------------------------------------------------------
+%
+%                           Brad T. Aagaard
+%                        U.S. Geological Survey
+%
+% ----------------------------------------------------------------------
+%
+
+\documentclass{reviewresponse}
+
+% ==================================================================
+\begin{document}
+
+\maketitle
+
+% ----------------------------------------------------------------------
+\reviewer{Associate Editor}
+
+\comment{%
+  Item 1 -- L 288: abbreviation LBB not defined previously; please add
+  here
+}{%
+  Expanded LBB to Ladyzhenskaya-Babuska-Brezzi.
+}%
+
+\comment{%
+  Suggestion 1 -- in Section 6, add a sentence or two on the
+  computational demands for the test cases shown.  I.e. how long did
+  the runs take in 6.1, 6.2 on which architecture, and what were the
+  computational requirements.  I envision that many research groups
+  may be interested in using the PyLith package, perhaps even in an
+  almost ``black-box'' mode, but not everyone has access to very-large
+  HPC systems. So some information on what is takes to run the cases
+  in 6.1 and 6.2 may be of interest to many who contemplate to install
+  and run the package on their compute system.
+
+}{%
+  Added some sentences on the run-time and computational resources used
+  for each of the benchmarks in section 6 (lines 796--799, 850--853,
+  873--875). We chose to give the information for the highest
+  resolution runs, which take the longest and use more computational
+  resources.
+}%
+
+\comment{%
+  Suggestion 2 -- Upon reading the manuscript once more, I found
+  Section 5 quite technical, and sort of distracting from the main
+  theme ... namely to solve a geo-physical problem with some (new)
+  code. Many readers may skip this section, I suppose ... so I wonder
+  if it could be moved into an Appendix, and hence making the main
+  body or the paper more concise and ``user friendly''. My Suggestion 1
+  could then also be dealt with in this Appendix.
+}{%
+  The choice of the preconditioners and parallel performance can
+  significantly affect run-time, which users care about. Consequently,
+  we prefer to keep the performance benchmark section in the main body
+  rather than move it to an appendix. We have also found that many
+  users know very little about selecting proper preconditioners, so
+  exposure to this information is useful. The section headers
+  clearly separate the sections, so readers can easily move onto the
+  next section if they are not interested in the details.
+}%
+
+% ----------------------------------------------------------------------
+\reviewer{Reviewer \#1: Sylvain Barbot}
+
+\comment{%
+  ``The fault tractions are associated with the total strain, not the
+  effective plastic strain'' should be ``The fault tractions are
+  associated with the elastic strain, not the effective plastic
+  strain'', because the total strain is the sum of the elastic and
+  inelastic strains: $\epsilon = \epsilon^e+\epsilon^i$ and with the
+  stress being due to elastic strain alone $\sigma = C : \epsilon^e$,
+  we obtain $\sigma = C : (\epsilon-\epsilon^i).$ Then the traction is
+  just $\sigma\cdot\hat{n}$. So either the traction depends on total
+  strain and inelastic strain or it depends on elastic strain alone.
+}{%
+  This is correct. Updated text to ``The fault tractions are
+  associated with the elastic strain.''
+}%
+
+\comment{%
+  There's alone a mission period page 33 after "96 cores".
+}{%
+  The period appears to have been away on a mission of some sort. In
+  any case, it has returned and now sits at its appropriate place
+  (line 668).
+}%
+
+
+
+% ==================================================================
+\end{document}
+
+% End of file



More information about the CIG-COMMITS mailing list