[CIG-MC] Re: CitcomCU in 2D?

Eh Tan tan2 at geodynamics.org
Tue Nov 6 14:04:25 PST 2007


Hi Tobias,

You can run "2D" model by using only 2 nodes in y direction. A small
(but non-zero) dimeny might be required to ensure the element has an
aspect ratio close to 1. You also have to use the conjugate gradient
solver, not the multigrid solver. The multigrid solver has special
requirement for the number of nodes in each direction.

A working input file is attached. I only confirmed that the solver is
working and converging, but didn't check the output, so the model may
not make sense. Customize the input file for your need, and let me know
if you have any problem running it.

Cheers,

-- 
Eh Tan
Staff Scientist
Computational Infrastructure for Geodynamics
2750 E. Washington Blvd. Suite 210
Pasadena, CA 91107
(626) 395-1693
http://www.geodynamics.org




Tobias Hoeink wrote:
> Hello from Houston,
>
> Is there a way to run CitcomCU (cartesian geometry) in 2 dimensions? I
> have looked into the source a little and it looks like there is a
> 'cart2d' option. However, it appears disabled.
>
> Would it work to use 'cart3d' and to play with the geometry
> parameters, e.g. by setting dimeny=0.0 or the like?
>
> I would appreciate your help. 
>
> Thanks,
> Tobias 
>
>
>
>
>
>
> Tobias Höink
> Keith-Wiess Postdoctoral Fellow
>
> Department of Earth Science, MS-126
> Rice University
> 6100 Main St, Houston, Texas 77005
>
> Mailing Address:
> P.O. Box 1892, Houston, Texas 77251-1892
>
> Tel. (713) 348 4497
> Fax. (713) 348 5214
>
> Tobias.Hoeink at rice.edu <mailto:Tobias.Hoeink at rice.edu>
> http://terra.rice.edu/department/staff/tobias.hoeink/
>
>
>
>

-------------- next part --------------
# Start up file for citcom using getpar.


# 1. Input and Output Files Information

	datafile="CASE1/caseA"	# directory and file head for output files.
	use_scratch="local"	# output files under current directory.
#	use_scratch="szhong"	# output files onto local disk to each compute node. 

	oldfile="CASE1/caseA"	# directory and file head for restart files.
	restart=0		# check Convection.c for different options
	restart_timesteps=20000	# timestep to restart

	stokes_flow_only=0	# 1: only solve velocity once; 0: time-dependent problem.
	maxstep=20000 		# max time steps
	storage_spacing=10	# write data every ...

# 2. Geometry, Ra numbers, Internal heating, Thermochemical/Purely thermal convection

	Solver=cgrad node_assemble=1	 # conjugate gradient: unsure if it still works

	rayleigh=10.97394e5	# Rayleigh number
	rayleigh_comp=1e6	# Compositional Rayleigh number. relevant for composition=1
	composition=0		# 0: purely thermal convection; 1: thermochem
	Q0=0			# Dimensionless internal heating rate
	Q0_enriched=0		# Q0 for C=1 layer, when relevant

	markers_per_ele=15	# number of particles per element
	comp_depth=0.605	# initial depth of compositional interface

	visc_heating=0		# 1: visc heating on; or 0: visc heating off.
	adi_heating=0		# 1: adiabatic heating on; or 0: adiabatic heating off.
	
# 3. Grid And Multiprocessor Information

	nprocx=1		# number of processors in x or theta dir	
	nprocz=1		# number of processors in z or r dir
	nprocy=1		# number of processors in y or fi dir

	nodex=15  nodez=15  nodey=2 	# only relevant with conj-grad

	mgunitx=14		# multigrid base level in x or t 
	mgunitz=14		# multigrid base level in z or r
	mgunity=1		# multigrid base level in y or f
	levels=1		# and how many times it gets doubled

# 4. Coordinate Information

	Geometry=cart3d 	# cart3d or Rsphere 

#CART:  irrelevant if Geometry=Rsphere.
	dimenx=1.0		# box size in x direction
	dimenz=1.0		# box size in z direction
	dimeny=0.01		# box size in y direction

	z_grid_layers=4		# minus 1 is number of layers with uniform grid in z.
	zz=0.0,0.1,0.9,1.0	#    starting and ending z coodinates
	nz=1,3,13,15		#    starting and ending node in z direction

	x_grid_layers=2
	xx=0,1
	nx=1,15

	y_grid_layers=2
	yy=0,1
	ny=1,2

	z_lmantle=0.76655052		# 2870 km-670 km
	z_410=0.857143			# 2870 km-410 km
	z_lith=0.9651568		# 2870-100 km


# Regional SPHERICAL: irrelevant if Geometry=cart3d

	radius_inner=0.55	radius_outer=1.0 	# inner and outer radius
	theta_north=73.5	theta_south=106.5	# colatitude in deg 
	fi_west=0		fi_east=36.0 		# longitude in deg

	r_grid_layers=4
	rr=0.55,0.59,0.96,1.0
	nr=1,6,44,49

	t_grid_layers=2
	tt=73.5,106.5
	nt=1,49

	f_grid_layers=2
	ff=0,36
	nf=1,49

	r_lmantle=0.89482	# (Ro-670 km)/Ro
	r_410=0.9356358
	r_lith=0.984301		# (Ro-100 km)/Ro

# 5. Rheology

	rheol=0	# 0,1,2,... diff. option for diff. rheology. Check Visco....c
	TDEPV=off		# on/off for temperature-dependent viscosity
	VISC_UPDATE=off		# on/off for updating viscosity or not.
	update_every_steps=2 	# update viscosity every n timesteps

	num_mat=4 # number of material group with possibly different rheology
	visc0=1.0e0,1.0e0,1.0e0,1.0e0	# pre-exponential constant
	viscE=6.9077553,6.9077553,6.9077553,6.9077553	#activation energy

	viscT=273,273,273,273		#surface temperature: 
	viscZ=5e-6,5e-6,5e-6,5e-6	#activation volume

	SDEPV=off			# on/off for non-Newtonian
	sdepv_misfit=0.010		# accuracy for non-Newtonian iteration
	sdepv_expt=1,1,1,1		# for each mat group, stress exponent
	sdepv_trns=1.e0,1.e0,1.e0,1.e0	# transition stress 

	VMIN=on visc_min=5.0e-2		# viscosity lower cutoff
	VMAX=on visc_max=2.0e04		# viscosity upper cutoff

	visc_smooth_cycles=1		# how viscosity is smoothed in multigrid
	Viscosity=system		# always  

# 6. DIMENSIONAL INFORMATION and Depth-dependence

	layerd=2870000.0 #meter
	radius=6370000.0
	ReferenceT=3800.0 
	refvisc=1.0e20
	density=3300.0
	thermdiff=1.0e-6
	gravacc=9.8
	thermexp=5e-5
	cp=1250
	wdensity=0.0

	visc_factor=1.0
	thermexp_factor=1.0
	thermdiff_factor=1.00
	dissipation_number=2.601
	surf_temp=0.078947

# 7. phase changes: to turn off any of the phase changes, let Ra_XXX=0

	Ra_410=0.0 #kg/m^3
	Ra_670=0.0
	clapeyron410=3.0e6 #Pa K-1
	clapeyron670=-3.0e6

	width410=3.5e4 #meter
	width670=3.5e4


# 8. BOUNDARY CONDITIONS and Initial perturbations
	
	topvbc=0		# velocity boundary conditions top and bottom
		topvbxval=0.0
		topvbyval=0.0
	botvbc=0
		botvbxval=0.0
		botvbyval=0.0
					#
	toptbc=1 bottbc=1		# temperature bc's top and bottom
	toptbcval=0.0 bottbcval=1.0	#

	periodicx=off 		#
	periodicy=off		#
	flowthroughx=off	#
	flowthroughy=off	#

	num_perturbations=1	#  N, Number of perturbations
	perturbmag=0.001	#  A list of N magnitudes
	perturbk=1.0		#  A list of N wavenumbers (/PI)
	perturbl=6.0		#  A list of N wavenumbers (/PI)
	perturbm=0.0		#  A list of N wavenumbers (/PI)


# 9. SOLVER RELATED MATTERS

	Problem=convection	# always, almost
	aug_lagr=on
	aug_number=1.0e3
	precond=on
	orthogonal=off

	maxsub=1

	viterations=2		# Uzawa iteration loops.
	vhighstep=3		# Smoothing passes at highest level (finest grid).

	piterations=375		# Uzawa iteration loops.
	accuracy=1.0e-4		# Desired accuracy of Uzawa algorithm. 
	tole_compressibility=1e-7

# Tuning of energy equation

	adv_sub_iterations=2
	finetunedt=0.75

	ll_max=20
	nlong=180
	nlati=90

# Data input and program debugging

	DESCRIBE=off		# 
	BEGINNER=off		#
	VERBOSE=off		#
	verbose=off		#
	COMPRESS=off		#
	see_convergence=1

# vim:ts=8:sw=8


More information about the CIG-MC mailing list