[CIG-MC] Re: CitcomCU in 2D?
Eh Tan
tan2 at geodynamics.org
Tue Nov 6 14:04:25 PST 2007
Hi Tobias,
You can run "2D" model by using only 2 nodes in y direction. A small
(but non-zero) dimeny might be required to ensure the element has an
aspect ratio close to 1. You also have to use the conjugate gradient
solver, not the multigrid solver. The multigrid solver has special
requirement for the number of nodes in each direction.
A working input file is attached. I only confirmed that the solver is
working and converging, but didn't check the output, so the model may
not make sense. Customize the input file for your need, and let me know
if you have any problem running it.
Cheers,
--
Eh Tan
Staff Scientist
Computational Infrastructure for Geodynamics
2750 E. Washington Blvd. Suite 210
Pasadena, CA 91107
(626) 395-1693
http://www.geodynamics.org
Tobias Hoeink wrote:
> Hello from Houston,
>
> Is there a way to run CitcomCU (cartesian geometry) in 2 dimensions? I
> have looked into the source a little and it looks like there is a
> 'cart2d' option. However, it appears disabled.
>
> Would it work to use 'cart3d' and to play with the geometry
> parameters, e.g. by setting dimeny=0.0 or the like?
>
> I would appreciate your help.
>
> Thanks,
> Tobias
>
>
>
>
>
>
> Tobias Höink
> Keith-Wiess Postdoctoral Fellow
>
> Department of Earth Science, MS-126
> Rice University
> 6100 Main St, Houston, Texas 77005
>
> Mailing Address:
> P.O. Box 1892, Houston, Texas 77251-1892
>
> Tel. (713) 348 4497
> Fax. (713) 348 5214
>
> Tobias.Hoeink at rice.edu <mailto:Tobias.Hoeink at rice.edu>
> http://terra.rice.edu/department/staff/tobias.hoeink/
>
>
>
>
-------------- next part --------------
# Start up file for citcom using getpar.
# 1. Input and Output Files Information
datafile="CASE1/caseA" # directory and file head for output files.
use_scratch="local" # output files under current directory.
# use_scratch="szhong" # output files onto local disk to each compute node.
oldfile="CASE1/caseA" # directory and file head for restart files.
restart=0 # check Convection.c for different options
restart_timesteps=20000 # timestep to restart
stokes_flow_only=0 # 1: only solve velocity once; 0: time-dependent problem.
maxstep=20000 # max time steps
storage_spacing=10 # write data every ...
# 2. Geometry, Ra numbers, Internal heating, Thermochemical/Purely thermal convection
Solver=cgrad node_assemble=1 # conjugate gradient: unsure if it still works
rayleigh=10.97394e5 # Rayleigh number
rayleigh_comp=1e6 # Compositional Rayleigh number. relevant for composition=1
composition=0 # 0: purely thermal convection; 1: thermochem
Q0=0 # Dimensionless internal heating rate
Q0_enriched=0 # Q0 for C=1 layer, when relevant
markers_per_ele=15 # number of particles per element
comp_depth=0.605 # initial depth of compositional interface
visc_heating=0 # 1: visc heating on; or 0: visc heating off.
adi_heating=0 # 1: adiabatic heating on; or 0: adiabatic heating off.
# 3. Grid And Multiprocessor Information
nprocx=1 # number of processors in x or theta dir
nprocz=1 # number of processors in z or r dir
nprocy=1 # number of processors in y or fi dir
nodex=15 nodez=15 nodey=2 # only relevant with conj-grad
mgunitx=14 # multigrid base level in x or t
mgunitz=14 # multigrid base level in z or r
mgunity=1 # multigrid base level in y or f
levels=1 # and how many times it gets doubled
# 4. Coordinate Information
Geometry=cart3d # cart3d or Rsphere
#CART: irrelevant if Geometry=Rsphere.
dimenx=1.0 # box size in x direction
dimenz=1.0 # box size in z direction
dimeny=0.01 # box size in y direction
z_grid_layers=4 # minus 1 is number of layers with uniform grid in z.
zz=0.0,0.1,0.9,1.0 # starting and ending z coodinates
nz=1,3,13,15 # starting and ending node in z direction
x_grid_layers=2
xx=0,1
nx=1,15
y_grid_layers=2
yy=0,1
ny=1,2
z_lmantle=0.76655052 # 2870 km-670 km
z_410=0.857143 # 2870 km-410 km
z_lith=0.9651568 # 2870-100 km
# Regional SPHERICAL: irrelevant if Geometry=cart3d
radius_inner=0.55 radius_outer=1.0 # inner and outer radius
theta_north=73.5 theta_south=106.5 # colatitude in deg
fi_west=0 fi_east=36.0 # longitude in deg
r_grid_layers=4
rr=0.55,0.59,0.96,1.0
nr=1,6,44,49
t_grid_layers=2
tt=73.5,106.5
nt=1,49
f_grid_layers=2
ff=0,36
nf=1,49
r_lmantle=0.89482 # (Ro-670 km)/Ro
r_410=0.9356358
r_lith=0.984301 # (Ro-100 km)/Ro
# 5. Rheology
rheol=0 # 0,1,2,... diff. option for diff. rheology. Check Visco....c
TDEPV=off # on/off for temperature-dependent viscosity
VISC_UPDATE=off # on/off for updating viscosity or not.
update_every_steps=2 # update viscosity every n timesteps
num_mat=4 # number of material group with possibly different rheology
visc0=1.0e0,1.0e0,1.0e0,1.0e0 # pre-exponential constant
viscE=6.9077553,6.9077553,6.9077553,6.9077553 #activation energy
viscT=273,273,273,273 #surface temperature:
viscZ=5e-6,5e-6,5e-6,5e-6 #activation volume
SDEPV=off # on/off for non-Newtonian
sdepv_misfit=0.010 # accuracy for non-Newtonian iteration
sdepv_expt=1,1,1,1 # for each mat group, stress exponent
sdepv_trns=1.e0,1.e0,1.e0,1.e0 # transition stress
VMIN=on visc_min=5.0e-2 # viscosity lower cutoff
VMAX=on visc_max=2.0e04 # viscosity upper cutoff
visc_smooth_cycles=1 # how viscosity is smoothed in multigrid
Viscosity=system # always
# 6. DIMENSIONAL INFORMATION and Depth-dependence
layerd=2870000.0 #meter
radius=6370000.0
ReferenceT=3800.0
refvisc=1.0e20
density=3300.0
thermdiff=1.0e-6
gravacc=9.8
thermexp=5e-5
cp=1250
wdensity=0.0
visc_factor=1.0
thermexp_factor=1.0
thermdiff_factor=1.00
dissipation_number=2.601
surf_temp=0.078947
# 7. phase changes: to turn off any of the phase changes, let Ra_XXX=0
Ra_410=0.0 #kg/m^3
Ra_670=0.0
clapeyron410=3.0e6 #Pa K-1
clapeyron670=-3.0e6
width410=3.5e4 #meter
width670=3.5e4
# 8. BOUNDARY CONDITIONS and Initial perturbations
topvbc=0 # velocity boundary conditions top and bottom
topvbxval=0.0
topvbyval=0.0
botvbc=0
botvbxval=0.0
botvbyval=0.0
#
toptbc=1 bottbc=1 # temperature bc's top and bottom
toptbcval=0.0 bottbcval=1.0 #
periodicx=off #
periodicy=off #
flowthroughx=off #
flowthroughy=off #
num_perturbations=1 # N, Number of perturbations
perturbmag=0.001 # A list of N magnitudes
perturbk=1.0 # A list of N wavenumbers (/PI)
perturbl=6.0 # A list of N wavenumbers (/PI)
perturbm=0.0 # A list of N wavenumbers (/PI)
# 9. SOLVER RELATED MATTERS
Problem=convection # always, almost
aug_lagr=on
aug_number=1.0e3
precond=on
orthogonal=off
maxsub=1
viterations=2 # Uzawa iteration loops.
vhighstep=3 # Smoothing passes at highest level (finest grid).
piterations=375 # Uzawa iteration loops.
accuracy=1.0e-4 # Desired accuracy of Uzawa algorithm.
tole_compressibility=1e-7
# Tuning of energy equation
adv_sub_iterations=2
finetunedt=0.75
ll_max=20
nlong=180
nlati=90
# Data input and program debugging
DESCRIBE=off #
BEGINNER=off #
VERBOSE=off #
verbose=off #
COMPRESS=off #
see_convergence=1
# vim:ts=8:sw=8
More information about the CIG-MC
mailing list