Implicit Turbulence Modeling

(The Magic of Nonoscillatory Finite Volume Approximation)

Len Margolin

Computational Physics
Los Alamos National Laboratory

Nonoscillatory Finite Volume Approximation

- 1) Finite Volume Approximations
- AKA flux form differencing, conservative differencing.
- Solves equations in integral form.
- Ref: Leveque, Finite Volume Methods
- 2) Nonoscillatory Methods
- Preserve monotonicity, positivity
- Ensure the 2^{nd} Law locally
- Examples: FCT, PPM, Godunov, WENO, MPDATA
- 3) Mimetic Methods
- Discrete calculus

Advantages of NFV Methods

- Nonlinearly stable (N)
- Exactly conserves mass, momentum, energy (FV)
- Implicit turbulence modeling (NFV)
- Spatially unsplit
- Discrete calculus
- Efficient on MPP platforms

Implicit Turbulence Modeling

- First pioneered by Boris for plasmas (MILES) late 1980s very controversial
- Early results:

Youngs, fluid instabilities Woodward, astrophysical jets Margolin & Smolarkiewicz, atmospheric physics

- Justification: Finite Scale theory, Margolin & Rider (2002)
- Book: Implicit Large Eddy Simulation, Grinstein, Margolin,
 & Rider (2007)

Finite Scale Theory

Question: If every point in a volume (e.g., computational cell) obeys Navier-Stokes equations, what equations do the averages of mass, energy, momentum obey?

<u>Answer</u>: Finite scale equations – Navier-Stokes plus new terms representing the noncommutativity of averaging and nonlinearity.

The derivation (M&R 2002) is based on a novel combination of renormalization and inductive reasoning.

Modified equation analysis shows that NFV schemes simulate the finite scale equations.

Energy/Dissipation for Decaying Turbulence

Figure 1: MPDATA simulation, N=255

Kolmogorov's $4/5^{th}$ Law

Shows that the energy dissipation rate is independent of physical viscosity, but is determined by the large scales of the flow.

$$3 < u_x^3 > = -\frac{4}{5} \frac{\epsilon}{\Delta x^2}$$

where

$$\epsilon = \frac{\partial}{\partial t} \left(u^2 + v^2 + w^2 \right)$$

time			1.50		
$-15 < u_x^3 > \delta x^2/(4\epsilon)$	0.785	0.933	1.028	1.054	1.019

Potential Drawbacks

1) Scientific: Finite scale equations for MHD have not been derived. (No reason to believe it couldn't be done.)

Reverse Engineering: Margolin & Rider, 2004.

2) Practical: Important members of the classical turbulence modeling community are still skeptical.

Fortifying quotes

"Progress always involves risks. You can't steal second base and keep your foot on first." Frederick B. Wilcox

"At every crossroads to the future there are a thousand self-appointed guardians of the past." Betty MacQuitty

"Science progresses, funeral by funeral." Niels Bohr

