
default

CIG PyLith Tutorial Workshop

Brad Aagaard
Charles Williams

Matt Knepley

May 16, 2011

default

Workshop Agenda

Introduction to CIG and PyLith

Example: Fault in a box

Afternoon

Morning Break

Tinker time

Lunch

Troubleshooting tips

Example: 2-D subduction zone

Break

Tinker time

Introduction Agenda

default

What is CIG?
Computational Infrastructure for Geodynamics (www.geodynamics.org)

Objective: Develop, support, and disseminate software for the
geodynamics community.

Coordinated effort to develop reusable, well-documented,
open-source geodynamics software
Strategic partnerships with the larger world of computational
science and geoinformatics
Specialized training and workshops for both geodynamics
and larger Earth-science communities

Underlying principle: Earth scientists need help from
computational scientists to develop state-of-the-art modeling
codes

Introduction CIG

default

CIG: Institution-Based Organization
Educational and not-for-profit organization

Open-organization
Any institution seeking to collaborate on the development of
open-source geodynamics software
No cost or size requirements

Current members
50 member institutions
10 foreign affiliates

NSF funding Jul 2010 – Jun 2015

Introduction CIG

default

CIG Working Groups
Organized by sub-disciplines

Short-term tectonics
Long-term tectonics
Mantle convection
Computational seismology
Geodynamo
Magma dynamics

Introduction CIG

default

Short-Term Tectonics Working Group

Objective: Simulate crustal deformation across spatial scales
from 1 m to 103 km and temporal scales ranging from 0.01 s to
105 years.

Formed through efforts by Brad Hager and Mark Simons
before CIG started
Strong connection to SCEC Crustal Deformation Modeling
focus group
Building connections with SCEC Earthquake Source Physics
focus group

Introduction CIG

default

CIG Organizational Structure

Staff
Responsible for software development
Director handles day-to-day decisions

Science Steering Committee
Voice of geophysics community
Prioritizes the competing needs of all sub-disciplines

Executive Committee
Primary decision-making body
Approves SSC recommendations and contractual
arrangements

Member institution representatives
Vote on membership applications and bylaws

Community members
Collaborate with staff to develop software

Introduction CIG

default

CIG Activities

Software development: primary activity
Workshops

Sponsors workshops organized by one or more working
groups
Holds workshops focusing on scientific computing and
geodynamics

Training in use of CIG software
Tutorials at workshops
Specialized training sessions (like this one)

Web site: geodynamics.org
Distribution of software and documentation
Mailing lists for each working group
Wiki-like web pages for community involvement

Introduction CIG

default

CIG Software

Introduction CIG

default

CIG Software for Crustal Deformation

PyLith
Solves 2-D and 3-D problems associated with earthquake
faulting and quasi-static and dynamic viscoelastic deformation
Short-term tectonics where geometry does not change
significantly

Gale
Solves problems in orogenesis, rifting, and subduction,
including free surfaces with coupling to surface erosion models
Long-term tectonics where geometry changes significantly

Introduction CIG

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Quasistatic modeling associated with earthquakes

Strain accumulation associated with interseismic deformation
What is the stressing rate on faults X, Y, and Z?
Where is strain accumulating in the crust?

Coseismic stress changes and fault slip
What was the slip distribution in earthquake A?
How did earthquake A change the stresses on faults X, Y, and
Z?

Postseismic relaxation of the crust
What rheology is consistent with observed postseismic
deformation?
Can aseismic creep or afterslip explain the deformation?

PyLith Overview

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Dynamic modeling associated with earthquakes

Modeling of strong ground motions
Forecasting the amplitude and spatial variation in ground
motion for scenario earthquakes

Coseismic stress changes and fault slip
How did earthquake A change the stresses on faults X, Y, and
Z?

Earthquake rupture behavior
What fault constitutive models/parameters are consistent with
the observed rupture propagation in earthquake A?

PyLith Overview

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Volcanic deformation associated with magma chambers and/or
dikes

Inflation
What is the geometry of the magma chamber?
What is the potential for an eruption?

Eruption
Where is the deformation occurring?
What is the ongoing potential for an eruption?

Dike intrusions
What the geometry of the intrusion?

PyLith Overview

default

PyLith

Developers
Brad Aagaard (USGS, lead developer))
Charles Williams (GNS Science, formerly at RPI)
Matthew Knepley (Univ. of Chicago, formerly at ANL)

Combined dynamic modeling capabilities of EqSim (Aagaard)
with the quasistatic modeling capabilities of Tecton (Williams)
Use modern software engineering (modular design, testing,
documentation, distribution) to develop an open-source,
community code

PyLith Overview

default

Crustal Deformation Modeling
Overview of workflow for typical research problem

FreeCIG

Open
Source

Commercial

Available

Planned

Legend

Geologic
Structure

Mesh
Generation

Physics
Code Visualization

Gocad

Earth Vision CUBIT

LaGriT

NetGen

TetGen

PyLith

GeoFEST

Abaqus

ParaView

Mayavi2

Visit

OpenDX

Matlab

Iris Explorer

Fledermaus

PyLith Overview

default

Governing Equations

Elasticity equation

σij,j + fi = ρü in V , (1)
σijnj = Ti on ST , (2)

ui = u0
i on Su, and (3)

Rki(u+
i − u−

i) = dk on Sf . (4)

Multiply by weighting function and integrate over the volume,

−
∫

V
(σij,j + fi − ρüi)φi dV = 0 (5)

After some algebra,

−
∫

V
σijφi,j dV +

∫
ST

Tiφi dS +

∫
V

fiφi dV −
∫

V
ρüiφi dV = 0 (6)

PyLith Governing Equations

default

Governing Equations

Writing the trial and weighting functions in terms of basis (shape)
functions,

ui(xi , t) =
∑

m

am
i (t)N

m(xi), (7)

φi(xi , t) =
∑

n

cn
i (t)N

n(xi). (8)

After some algebra, the equation for degree of freedom i of vertex
n is

−
∫

V
σijNn

,j dV+

∫
ST

TiNn dS+

∫
V

fiNn dV−
∫

V
ρ
∑

m

äm
i NmNn dV = 0

(9)

PyLith Governing Equations

default

Governing Equations

Using numerical quadrature we convert the integrals to sums over
the cells and quadrature points

−
∑

vol cells

∑
quad pts

σijNn
,j wq|Jcell|+

∑
surf cells

∑
quad pts

TiNnwq|Jcell|

+
∑

vol cells

∑
quad pts

fiNnwq|Jcell|

−
∑

vol cells

∑
quad pts

ρ
∑

m

äm
i NmNnwq|Jcell| = ~0 (10)

PyLith Governing Equations

default

Quasistatic Solution
Neglect inertial terms

Form system of algebraic equations

A(t)~u(t) = ~b(t) (11)

where

Anm
ij (t) =

∑
vol cells

∑
quad pts

1
4

Cijkl(t)(Nm
,l + Nm

,k)(N
n
,j + Nn

,i)wq|Jcell| (12)

bi(t) =
∑

surf cells

∑
quad pts

Ti(t)Nnwq|Jcell|+
∑

vol cells

∑
quad pts

fi(t)Nnwq|Jcell|

(13)

and solve for ~u(t).

PyLith Governing Equations

default

Implementation: Fault Interfaces
Use cohesive cells to control fault behavior

Original Mesh Mesh with Cohesive Cell
1 3 5

0 2 4

0 2 2 4

5331

1

0

2

4

3

5

6

7

8

9

0 2 2

8

6 6 4

577
9

31 3

PyLith Fault Implementation

default

Fault Slip Implementation
Use Lagrange multipliers to specify slip

System without cohesive cells
Conventional finite-element elasticity formulation

A~u = ~b

Fault slip associated with relative displacements across fault

C~u = ~d

System with cohesive cells(
A CT

C 0

)(
~u
~l

)
=

(
~b
~d

)
Lagrange multipliers are tractions associated with fault slip
Prescribed (kinematic) slip
Specify fault slip (~d) and solve for Lagrange multipliers (~l)
Spontaneous (dynamic) slip
Adjust fault slip to be compatible with fault constitutive model

PyLith Fault Implementation

default

Implementing Fault Slip with Lagrange multipliers

Advantages
Fault implementation is local to cohesive cell
Solution includes forces generating slip (Lagrange multipliers)
Retains block structure of matrix, including symmetry
Offsets in mesh mimic slip on natural faults

Disadvantages
Cohesive cells require adjusting topology of finite-element
mesh

PyLith Fault Implementation

default

Ingredients for Running PyLith

Simulation parameters
Finite-element mesh

Mesh exported from LaGriT
Mesh exported from CUBIT
Mesh constructed by hand (PyLith mesh ASCII format)

Spatial databases for physical properties, boundary
conditions, and rupture parameters

SCEC CVM-H or USGS Bay Area Velocity model
Simple ASCII files

PyLith Running PyLith

default

Spatial Databases
User-specified field/value in space

Examples
Uniform value for Dirichlet (0-D)
Piecewise linear variation in tractions for Neumann BC (1-D)
SCEC CVM-H seismic velocity model (3-D)

Generally independent of discretization for problem
Available spatial databases
UniformDB Optimized for uniform value
SimpleDB Simple ASCII files (0-D, 1-D, 2-D, or 3-D)

SCECCVMH SCEC CVM-H seismic velocity model v5.3
ZeroDispDB Special case of UniformDB

PyLith Running PyLith

default

Features in PyLith 1.5
Enhancements and new features in blue

Time integration schemes and elasticity formulations
Implicit for quasistatic problems (neglect inertial terms)

Infinitesimal strains
Small strains

Explicit for dynamic problems
Infinitesimal strains with sparse system Jacobian
Infinitesimal strains with lumped system Jacobian
Small strains with sparse system Jacobian

Bulk constitutive models
Elastic model (1-D, 2-D, and 3-D)
Linear and Generalized Maxwell viscoelastic models (3-D)
Power-law viscoelastic model (3-D)
Linear Maxwell viscoelastic model (2-D)
Drucker-Prager elastoplastic model (3-D)

PyLith Features

default

Features in PyLith 1.5 (cont.)
Enhancements and new features in blue

Boundary and interface conditions
Time-dependent Dirichlet boundary conditions
Time-dependent Neumann (traction) boundary conditions
Absorbing boundary conditions
Kinematic (prescribed slip) fault interfaces w/multiple ruptures
Dynamic (friction) fault interfaces
Time-dependent point forces
Gravitational body forces

Fault constitutive models
Static friction
Linear slip-weakening
Dieterich-Ruina rate and state friction w/ageing law

PyLith Features

default

Features in PyLith 1.5 (cont.)
Enhancements and new features in blue

Automatic and user-controlled time stepping
Ability to specify initial stress state
Importing meshes

LaGriT: GMV/Pset
CUBIT: Exodus II
ASCII: PyLith mesh ASCII format (intended for toy problems
only)

Output: VTK files
Solution over volume
Solution over surface boundary
State variables (e.g., stress and strain) for each material
Fault information (e.g., slip and tractions)

Automatic conversion of units for all parameters

PyLith Features

default

PyLith Development

Long-term priorities
Multi-cycle earthquake modeling

Resolve interseismic, coseismic, and postseismic deformation
Elastic/viscoelastic/plastic rheologies
Coseismic slip, afterslip, and creep

Efficient computation of 3-D and 4-D Green’s functions
Scaling to 1000 processors

Short-term priorities
Implement several new feature and improve parallel
performance
Increase user training using virtual workshops

CIG/SCEC/NASA/NSF workshop: annual → biannual
(Jun 2012)
Jun 20-24, 2011: PyLith traininng via virtual workshop

PyLith Features

default

PyLith Development
Planned Releases

v1.6 (June 2011)
HDF5 output (parallel, binary I/O)
Custom preconditioner with AMG solver
Uniform, global mesh refinement
Numerical damping via viscosity for dynamic problems

v1.7 (Fall 2011)
Accelerate FE integrations using GPUs
Scalable mesh distribution among processors
Attenuation for dynamic simulations (wave propagation)

v2.0 (June 2012)
Coupling of quasistatic and dynamic simulations
Heat and fluid flow coupled to elastic deformation
Higher order FE basis functions
Moment tensor point sources
Support for incompressible elasticity

PyLith Features

default

Design Philosophy
Modular, extensible, and smart

Code should be flexible and modular
Users should be able to add new features without modifying
code, for example:

Boundary conditions
Bulk constitutive models
Fault constitutive models

Input/output should be user-friendly
Top-level code written in Python (expressive, dynamic typing)
Low-level code written in C++ (modular, fast)

PyLith Architecture

default

PyLith Design: Focus on Geodynamics
Leverage packages developed by computational scientists

PyLith

PETSc

Pyre Sieve Proj.4 FIAT

numpy

MPI BLAS/LAPACK boost

PyLith Architecture

default

PyLith as a Hierarchy of Components
Components are the basic building blocks

���������

������

����

���

����������

����������

������������������

����������

��������

PyLith Architecture

default

PyLith as a Hierarchy of Components
PyLith Application and Time-Dependent Problem

���������

����������

����������

����

��������������

�������

�����

�������������

����������

����������

���������

����������

���������

��

����������

�������������

�����������

PyLith Architecture

default

PyLith as a Hierarchy of Components
Fault with kinematic (prescribed slip) earthquake rupture

����������������

����������

����������

��

����

������

����������

����������

�������

�����

��������

����������

����������

�����������

�������������

PyLith Architecture

default

PyLith as a Hierarchy of Components
Diagram of simple toy problem

PyLith Architecture

default

PyLith as a Hierarchy of Components

PyLith Architecture

default

PyLith Application Flow

PyLithApp
main()

mesher.create()

problem.initialize()

problem.run()

TimeDependent (Problem)
initialize()

formulation.initialize()

run()

while (t < tEnd)

dt = formulation.dt()

formulation.prestep(dt)

formulation.step(dt)

formulation.poststep(dt)

Implicit (Formulation)
initialize()

prestep()

set values of constraints

step()

compute residual

solve for disp. incr.

poststep()

update disp. field

write output

PyLith Architecture

default

Unit and Regression Testing
Automatically run more than 1800 tests on multiple platforms whenever code is
checked into the source repository.

Create tests for nearly every function in code during
development

Remove most bugs during initial implementation
Isolate and expose bugs at origin

Create new tests to expose reported bugs
Prevent bugs from reoccurring

Rerun tests whenever code is changed
Code continually improves (permits optimization with quality
control)

Binary packages generated automatically upon successful
completion of tests
Additional full-scale tests are run before releases

PyLith Testing

default

Example of Automated Building and Testing
Test written to expose bug, buildbot shows tests fail

PyLith Testing

default

Example of Automated Building and Testing
Bug is fixed, buildbot shows tests pass

PyLith Testing

	Introduction
	Agenda
	CIG

	PyLith
	Overview
	Governing Equations
	Fault Implementation
	Running PyLith
	Features
	Architecture
	Testing

