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Continuum Description

‣ Incompressible Stokes flow with general constitutive tensor.

Constitutive

Strain rate

flow it is convenient to decompose the stress into its deviatoric and volumetric compo-6

nents according to σij = τij − pδij, where p is the dynamic pressure. If we let ui denote7

the fluid velocity, then the conservation of momentum and mass is given by;8

τij,j − p,i + fi = 0,

− ui,i = 0,
(1)

together with the boundary conditions;9

ui = gi, on Γgi

σijnj = hi, on Γhi ,
(2)

where ni is the unit outward normal vector to the boundary of Ω. To uniquely define10

the pressure field we also require that11 ∫
Ω

p dV = ps, (3)

for some constant ps. The strain rate12

ε̇ij = 1
2(ui,j + uj,i), (4)

is related to the deviatoric stress τij via13

τij = Λijklε̇kl, (5)

where Λijkl is referred to as the constitutive tensor. By inserting the constitutive rela-14

tionship (5) and the definition of the strain rate (4) into the momentum equation (1),15

the viscous flow problem can be posed in terms of the unknowns ui, p. Here we consider16

a spatial discretization given the Finite Element Method (FEM), which applied to (1)17

yields a discrete saddle point system Ax = b;18  K G

GT 0


 u

p

 =

 f

h

 , (6)

where K ∈ Rm×m is a symmetric positive definite matrix associated with the discrete19

form of τij,j and G ∈ Rm×n, m > n is associated with the discretized gradient operator.20

Due the presence of the zero matrix in the (2, 2) block, A is indefinite. Formulations21

leading to systems of the form of (6) have been used extensively in the geodynamics22

community for modelling mantle convection (Baumgardner, 1985; Moresi and Soloma-23

tov, 1995; Trompert and Hansen, 1996; Tackley, 1996; Albers, 2000; Kameyama et al.,24

2005), lithospheric deformation (Fullsack, 1995; Wijns et al., 2005; Gerya and Yuen,25

2003; Kaus and Schmalholz, 2006) and diaprism (Poliakov and Podladchikov, 1992).26

The matrices in the block system (6) are generally sparse, but potentially can become27

very large if high resolution, three dimensional simulations are to be performed. In such28

situations, the application of direct solution methods is generally not feasible due to29
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Momentum

Mass
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in Ω
}

We formulate the problem entirely in terms of velocity u, and pressure p.
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‣ Mixed Finite Element discretisation (Q1-P0)

‣  Inherits robustness, versatility of FEM

‣ Admits general constitutive relations

‣ Material properties tracked via particles - aka MPM

‣   Compositional tracking

‣   Stress- history tensor

‣   Plastic strain history ( scalar / tensorial )

‣   Material orientation ( anisotropy )

In the style of the Material Point Method...
   “a fixed mesh with moving particles”

This is the approach adopted in Underworld
www.mcc.monash.edu.au

Discrete Stokes Flow Formulation
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K
E =

∫
ΩE

B
T(x)C(x)B(x)dΩ

K
E = ∑

p

wpB
T
p (xp)Cp(xp)Bp(xp)

Lagrangian points coincide with the quadrature points 
used to evaluate the weak form 
- quadrature weights are defined locally 
over each element.
- weights are given by an approximate voronoi diagram.

The connection between the FE formulation and the Lagrangian 
points is via evaluation of the weak form.

The constitutive behaviour is associated with each particle “p” and is 
thus naturally incorporated into the quadrature.

The discrete form of the momentum and continuity generated by the FEM 
may be expressed as (

K G
GT 0

) (
u
p

)
=

(
f
h

)
The MPM formulation provided the means to discretize the Stokes flow.
But the issue of obtaining the flow field (u,p) is now a linear algebra problem...

Discrete Stokes Flow Formulation

K ∈ Rm×m

G ∈ Rm×n, m > n
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Iterative methods for Discrete Stokes Flow

‣ the discretisation parameters (Example; grid resolution)

‣ the constitutive parameters (Example; smoothly varying vs. discontinuous viscosity

‣ the constitutive behaviour (Example; isotropic vs. anisotropic)

‣ the solution is obtained in O(n) time... ie. multigrid

The ideal approach should be optimal in the sense that the 
convergence rate of method will be bounded independently of

These are a challenging set of requirements !
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Schur Complement Reduction
‣ Decouple u and p

‣ Solve the Schur complement system

‣ Represent S as a matrix-free object.  To compute                we

‣ Outer Krylov iterations performed on Sp=h’,                                                                             
inner iterations performed on Ky=x.

‣ Need preconditioners for S and K.

solve for p : (GT K−1G)p = GT K−1f − h,

solve for u : Ku = f −Gp.

y = Sx

compute: f∗ = Gx,

solve for u∗ : Ku∗ = f∗,

compute: y = GT u∗.

S = GT K−1Gwhere  is the Schur complement. 
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Fully Coupled Approach

‣ Treat the Stokes problem as single coupled system 

‣ Apply any suitable Krylov method to 

‣ We require preconditioner for 

‣ Block diagonal or block upper triangular

‣ Both options require preconditioners for K and S.

One of the main issues with the segregated approach is that when an iterative method179

is applied in (23b), a sufficiently accurate solution must be obtained otherwise the outer180

iterations may not converge. For reliability in the convergence rate of the outer solver,181

one should ensure that the residual from the inner system satisfies ‖ri‖ < cεo, where182

0 < c ≤ 1 and εo is the tolerance placed on the residual of the outer Krylov method.183

Developing inexact approaches with a relaxed evaluation of matrix-vector products184

involving S is an on going area of research (Bouras and Frayssé, 2005) but we do not185

consider using such techniques here.186

For the segregated approach to be competitive, fast solvers for Kx = y are required. For187

case when m is small, exact factorizations are effective as K need only be factored once188

per time step and then may subsequently be re-used in each outer iteration. Suitable189

preconditioners are required to accelerate the convergence of the iterative methods190

applied to S and K. The SCR approach is attractive from the point of view that191

for inf-sup stable discretizations, all isoviscous models will produce a discrete Schur192

complement with a condition number independent of the discretization parameter h,193

thus bounding the number of outer iterations required for convergence. This result is194

no longer true if the viscosity varies in space. In this case, the condition number of S195

will still vary due to changes in constitutive relationship, thus preconditioning (22a) is196

essential to minimize the number of outer iterations required for convergence. In §3 we197

discuss several strategies to construct preconditioners for S.198

2.3 Fully coupled approach (FC)199

As an alternative to decoupling the velocity and pressure unknowns we can consider200

writing (6) as Ax = b, A ∈ R(m+n)×(m+n) where201

A =

 K G

GT 0

 , x =

u

p

 , b =

f

h

 , (24)

and applying a Krylov method directly to the full block system A. We will refer to this202

as the fully coupled (FC) approach. An important aspect of the fully coupled approach203

is the choice of block preconditioner Â. Several block preconditioners for the indefinite204

system have been examined, including205

Âd =

 K̂ 0

0 −Ŝ

 , Âu =

 K̂ G

0 −Ŝ

 . (25)

The block diagonal preconditioner Âd was studied in Elman and Silvester (1996b);206

Rusten and Winther (1992); Silvester and Wathen (1994), but the block upper trian-207

gular preconditioner Âu introduced in Bramble and Pasciak (1988) has been shown to208

be a more effective preconditioner. See Benzi et al. (2005) (§10.1.2) for more details.209
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Elman, Silvester (1994)
Rusten, Winther (1992)
Silvester, Wathan (1994)

Bramble, Pasciak (1988)
Murphy, Golub (2000)

Ax = b

A.

−→ Ax = b, A ∈ R(m+n)×(m+n)
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A Block Preconditioner for K

‣ Billinear form of the deviatoric stress tensor gradient

‣ Discrete operator

‣ A spectrally equivalent billinear form is

K =
(

K11 K12

K21 K22

)
a(u, v) =

∫
Ω

2η εij(u)εij(v) dV

â(u, v) =
∫

Ω
η (∇uk) ! (∇vk) dV

[ Axelsson, Padiy, “On a robust and scalable linear 
elasticity solver based on a saddle point formulation” ]

with discrete operator given by

K̂ =
(

K11 0
0 K22

)
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A Block Preconditioner for K

‣ Block Gauss-Seidel

‣ Discrete counterpart of the stress gradient is given by

‣ Treat each velocity component as scalar, variable coefficient diffusion problem.

‣ Each scalar problem permits effective multigrid preconditioning.

xk+1 = (D + L)−1 (
b− Uxk

)Ax = b

(
K11 K12

K21 K22

) (
u
v

)
=

(
fx

fy

)
A = D + L + U

D = diag [K11, K22]

K−1
iiEach           given by CG,  with                      , preconditioned via ML.

‖rk‖
‖r0‖ < 10−2
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A Block Preconditioner for K

‣ Two dimensional code using Q1-P0. Solve

‣ Sensitivity of iterations to grid and viscosity contrast 

‣  i) 

‣ ii) 

Ω = [0, 1]× [0, 1]Ku = f,

η = 106 exp(θx)
elements θ (∆η)

M ×N 4.6 (102) 13.8 (106) 18.4 (108)

1002 4 4 4

2002 4 4 4

3002 4 4 4
Table 1
Iterations as a function of exponent, θ and viscosity contrast, ∆η. Domain [0, 1] × [0, 1].
Viscosity function used η = 106exp(θx).

elements ∆η

M ×N 102 106 1010

1002 5 5 5

2002 5 5 5

3002 5 5 5
Table 2
Iterations as a function of viscosity contrast, ∆η. Domain [0, 1] × [0, 1]. Viscosity function
used η = ∆η, x ≥ 0.5, η = 1.0, x < 0.5.

M ×N unknowns its. CPU time (sec)

2002 80,802 4 7.2

2842 162,450 4 12.7

4022 324,818 4 25.8
Table 3
CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Viscosity function used
η = 106exp(θx). ∆η = 106.

1

(i)

η =

{
1 x < 1

2

∆η x ≥ 1
2
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1

(ii)
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A Block Preconditioner for K

‣ Timings

‣ In short, the block Gauss-Seidel preconditioner looks very promising. 

‣ It is scalable, robust and exhibits ~ O(n) solution times when combined with ML. 

‣ It’s effectiveness for 3D problems (u,v,w) needs to be examined.

‣ Parallel efficiency needs to be explored. Others have demonstrated this with ML.

θ = 13.8, ∆η = 106

η = 106 exp(θx)

elements θ (∆η)

M ×N 4.6 (102) 13.8 (106) 18.4 (108)

1002 4 4 4

2002 4 4 4

3002 4 4 4
Table 1
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Viscosity function used η = 106exp(θx).
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1002 5 5 5

2002 5 5 5
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used η = ∆η, x ≥ 0.5, η = 1.0, x < 0.5.

M ×N unknowns its. CPU time (sec)

2002 80,802 4 7.2

2842 162,450 4 12.7

4022 324,818 4 25.8
Table 3
CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Viscosity function used
η = 106exp(θx). ∆η = 106.

1
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Preconditioner for S

‣ Consider using commutators to construct an approximation for                                
[ Kay, et. al, SIAM J. Sci. Comput., 24 (2002) ]

For isoviscous Stokes, the commutator relation used is;

Zc =
(
η∇2

)∇−∇ (
η∇2

)
= 0

For variable viscosity the continuous operators will not commutator.
Instead we will utilize the the analgous discrete commutator of Zc

[ Elman, et. al, SIAM J. Sci. Comput., 27 (2006) ]

Z = KG−GKp Z ∈ Rm×n
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Preconditioner for S

‣ To define the Schur complement, pre-multiply discrete commutator Z by

‣ A little manipulation yields 

‣ And finally we have

GT G− (
GT K−1G

)
Kp = GT K−1Z

Lp − SKp = GT K−1Z , Lp = GT G

S =
(
Lp −GT K−1Z

)
K−1

p

S−1 = Kp

(
Lp −GT K−1Z

)−1

GT K−1
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Preconditioner for S

‣ Define the operator Kp in a least squares manner assuming Z ~ 0.

GKp = KG

GT GKp = GT KG

K∗
p =

(
GT G

)−1
GT KG

which is the BFBt preconditioner from; Elman, SIAM J. Sci. Comput., 17 (1996)

+ No inversion of K required

+ Coupling in K preserved

- Two Poisson solves required

+ Most problems require low

precision Poisson solves

In practice, the assumption Z~0 is usually not true.  As a result the approximate 
Schur complement inverse will not be close to the true Schur complement.

S−1 ≈ K∗
pL−1

p

= L−1
p GT KGL−1

p

= S−1
b
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Break Down of the Commutator Assumption

∆η = 10

∆η = 104

∆η = 106

∆η = 108

Convergence deteriorates as the viscosity contrast increase
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Scaled BFBt

‣ Some observations...

‣ Lets suppose 

K = Im

S = GT K−1G

= GT G

a)

K∗
p = L−1

p GT KG

= L−1
p GT G

= In

b)

Z = KG−GK∗
p

= ImG−GIn

= 0

c)

S−1
b = K∗

pL−1
p

= InL−1
p

= S−1

d)

As K → Im, we have:

K∗
p → In,

Z → 0,

S−1
b → S−1.
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Scaled BFBt
‣ Previous observations motivate us to apply a scaling operation to (i) better condition 

the operator A, and (ii) to help drive the discrete commutator towards 0.

‣ We have chosen the following scaling to preserve symmetry:

‣ We wish to build an X1 such that we have: 

‣ For the sake of scaling rather than preconditioning we, prescribe X to be diagonal.

‣ The scaling we use is given by:

X1 =
[
diag(K)

]−1/2

XAX T =
(

X1 0
0 X2

) (
K G
GT 0

) (
XT

1 0
0 XT

2

)
=

(
K̄ Ḡ
ḠT 0

)
= Ā

where K̄ = X1KXT
1 ,

Ḡ = X1KXT
2 .

K̄ ≈ Im
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Scaled BFBt

‣ The scaled BFBt preconditioner is given by:

‣ The scaled Lp operator is:

‣

‣

S−1
sb = L̄−1

p ḠT K̄ḠL̄−1
p

L̄p = ḠT Ḡ

= X2

[
GT XT

1 X1G
]
XT

2

The scaling changes the discrete Poisson operator to a discrete variable-
coefficient diffusion operator.  The coefficient is related to the inverse of the 
viscosity.

The original and scaled Lp system can both be efficiently handled with 
multigrid. Either geometric MG or algebraic are suitable. We use ML.
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Prototype Problems

‣ We consider three isotropic models with different viscosity structures.

‣ Two dimensional code using Q1-P0 elements.

Exponentially varying with depth
                  “Exp(y)”

Step function in x
       “Step(x)”

Step function in x & y
    “Viscous sinker”

Element resolutions = 
{

1
32 , 1

64 , 1
128 , 1

256

}
Viscosity contrasts = 

{
10, 103, 106, 108

}
S−1

diag = diag
(
GT diag(K)−1G

)−1

Reference preconditioner for S
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Results:  “Exp(y)”
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Results:  “Step(x)”

 - dependence

50 100 150 200 250

Elements, mx

10

100

1000

It
e

ra
ti
o

n
s

diag

bfbt

 - dependence

1x10
1
1x10

2
1x10

3
1x10

4
1x10

5
1x10

6
1x10

7
1x10

8

10

100

1000

Viscosity contrast

It
e

ra
ti
o

n
s

diag

bfbt



Stokes Preconditioners CIG-GeoMath ‘08

Results:  “Sinker”
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A Comparison
‣ Schur complement reduction versus fully coupled approach

+1
0
0

+1

• The FC(FG,Ŝ−1
sb ) approach was robust with respect to increasing viscosity contrast569

in both the Sinker and SolKy problems. The solutions from SolCx do not exhibit570

the same degree of robustness as was observed in the other two models. appeared to571

be reduced at higher resolutions.572

• The h dependence in the SolCx and Sinker models increased with increasing573

viscosity contrast. For each of ∆η = {10, 104, 106, 108}, we observe an increase in574

iterations given by {6, 7, 8, 13} as the element resolution varied from h = 1/32 →575

1/256.576

Iterations Sinker SolCx SolKy

∆η 10 103 106 108 10 103 106 108 10 103 106 108

h = 1/32 12 13 13 14 10 12 14 15 7 8 9 9

h = 1/64 14 15 13 13 11 14 14 17 7 8 9 9

h = 1/128 16 17 16 16 13 16 18 22 8 9 9 9

h = 1/256 19 20 20 21 16 19 22 27 8 9 9 9
Table 4
Iteration counts for the test problems using FC(FG,Ŝ−1

sb ). See text for details concerning the
specific solver configuration.
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+2
0
0

+2

+1
0
0

+1
+5  +5   +5   +5  +7  +7   +7   +7  

Sinker

Iterations SCR(CG,Ŝ−1
4 ) SCR(CG,Ŝ−1

sb ) SCR(FG,Ŝ−1
sb )

∆η 10 103 106 108 10 103 106 108 10 103 106 108

h = 1/32 39 72 88 102 10 11 16 16 8 9 9 9

h = 1/64 49 103 109 157 11 14 16 16 10 10 9 9

h = 1/128 62 137 172 189 13 16 20 20 11 11 11 11

h = 1/256 107 248 330 389 18 18 20 18 13 14 14 14

SolCx

Iterations SCR(CG,Ŝ−1
4 ) SCR(CG,Ŝ−1

sb ) SCR(FG,Ŝ−1
sb )

∆η 10 103 106 108 10 103 106 108 10 103 106 108

h = 1/32 30 56 78 78 6 9 15 14 6 8 9 9

h = 1/64 37 89 144 146 8 11 15 17 7 9 10 10

h = 1/128 33 146 235 277 8 11 18 20 8 10 12 12

h = 1/256 24 172 408 488 9 14 20 25 9 13 13 14

SolKy

Iterations SCR(CG,Ŝ−1
4 ) SCR(CG,Ŝ−1

sb ) SCR(FG,Ŝ−1
sb )

∆η 10 103 106 108 10 103 106 108 10 103 106 108

h = 1/32 6 6 8 9 4 6 7 7 4 6 6 6

h = 1/64 6 6 8 9 4 6 7 7 4 6 6 6

h = 1/128 6 6 8 9 4 6 7 7 4 6 6 6

h = 1/256 6 6 8 9 4 6 7 7 4 6 6 6
Table 1
Comparison of three configurations of SCR applied to the three test problems. Solves for
K utilize CG preconditioned with ILU(0). Iterations terminated when preconditioned rela-
tive residual was < 10−7. Systems Lp (in BFBt) were solved using CG preconditioned with
ICC(0), iterations were terminated when preconditioned relative residual was < 10−5. Outer
iterations on S where terminated when the relative residual was < 10−6.

ments (table 1), we used the stopping condition531

‖L̂−1
p r′k‖

‖L̂−1
p r′0‖

≤ δL = 10−5, (54)

where r′ = Lpẑ − r with reference to (53). Since the action of L−1
p forms part of the532

definition of a preconditioner, we are motivated to try relaxing the tolerance on this533

solve in an attempt to improve the overall efficiency of the method. Using a relaxed tol-534
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“Sinker”

• The FC(FG,Ŝ−1
sb ) approach was robust with respect to increasing viscosity contrast569

in both the Sinker and SolKy problems. The solutions from SolCx do not exhibit570

the same degree of robustness as was observed in the other two models. appeared to571

be reduced at higher resolutions.572

• The h dependence in the SolCx and Sinker models increased with increasing573

viscosity contrast. For each of ∆η = {10, 104, 106, 108}, we observe an increase in574

iterations given by {6, 7, 8, 13} as the element resolution varied from h = 1/32 →575

1/256.576

Iterations Sinker SolCx SolKy

∆η 10 103 106 108 10 103 106 108 10 103 106 108

h = 1/32 12 13 13 14 10 12 14 15 7 8 9 9

h = 1/64 14 15 13 13 11 14 14 17 7 8 9 9

h = 1/128 16 17 16 16 13 16 18 22 8 9 9 9

h = 1/256 19 20 20 21 16 19 22 27 8 9 9 9
Table 4
Iteration counts for the test problems using FC(FG,Ŝ−1

sb ). See text for details concerning the
specific solver configuration.
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+3  +5   +4   +5  +6  +7   +8   +13  

Sinker

Iterations SCR(CG,Ŝ−1
4 ) SCR(CG,Ŝ−1

sb ) SCR(FG,Ŝ−1
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∆η 10 103 106 108 10 103 106 108 10 103 106 108

h = 1/32 39 72 88 102 10 11 16 16 8 9 9 9

h = 1/64 49 103 109 157 11 14 16 16 10 10 9 9

h = 1/128 62 137 172 189 13 16 20 20 11 11 11 11
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SolCx

Iterations SCR(CG,Ŝ−1
4 ) SCR(CG,Ŝ−1

sb ) SCR(FG,Ŝ−1
sb )
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h = 1/128 33 146 235 277 8 11 18 20 8 10 12 12

h = 1/256 24 172 408 488 9 14 20 25 9 13 13 14

SolKy

Iterations SCR(CG,Ŝ−1
4 ) SCR(CG,Ŝ−1

sb ) SCR(FG,Ŝ−1
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K utilize CG preconditioned with ILU(0). Iterations terminated when preconditioned rela-
tive residual was < 10−7. Systems Lp (in BFBt) were solved using CG preconditioned with
ICC(0), iterations were terminated when preconditioned relative residual was < 10−5. Outer
iterations on S where terminated when the relative residual was < 10−6.

ments (table 1), we used the stopping condition531
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≤ δL = 10−5, (54)

where r′ = Lpẑ − r with reference to (53). Since the action of L−1
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Summary

1) Stokes flow is an common component of numerous types of geodynamic models.

Viscosity structures used in geodynamic models can provide challenging problems for iterative 
methods.

2) A block Gauss-Seidel iteration combined with algebraic multigrid was shown to be robust 
and scalable preconditioner for the (1,1) block associated with the discretized gradient of the 
stress tensor.

3) The scaled BFBt preconditioner was shown to be fairly robust and 
scalable preconditioner for the Schur complement.

4) All preconditioners examined permit the use of multigrid.

5) Using a fully coupled (FC) approach to solve Stokes generally requires more iterations 
than the Schur complement reduction (SCR). The rate of the inreasing iterations required by 
FC w.r.t viscosity contrast and increased resolution grows faster than that observed with 
SCR. The extra iterations incurred by FC may be offset by using relaxed solves on the 
preconditioner for the (1,1) block.

We need to conduct more detailed studies to examine the effectiveness of 
these ideas in 3D and in a massively parallel environment. This work is 

presently underway within Underwold and CitcomS...



Stokes Preconditioners CIG-GeoMath ‘08

A note on software

‣ The following software packages were used to obtain the results presented...

PETSc:                www.mcs.anl.gov/petsc

PetscExt:             www.maths.monash.edu.au/~dmay/PetscExt  

Underworld:        www.mcc.monash.edu.au  

ML (via PETSc):    http://software.sandia.gov/Trilinos

Thanks for your attention


