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Solve A3u3=f3

What is   Multigrid ?

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2.

Set u3 = u3 + P2u2.  Smooth A3u3=f3.

P2       R2

P1       R1

Basic idea:
• Develop coarse approximations

• Accelerate convergence via
coarse iterations to efficiently
propagate information



What is   Multigrid ?

• Determine Pi & Ri’s coefs

• Project: Ai = Ri Ai+1 Pi

• Construct Graph & Coarsen

Solve A3u3=f3

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2.

Set u3 = u3 + P2u2.  Smooth A3u3=f3.

P2       R2

P1       R1

• Determine Pi & Ri sparsity pattern 

Algebraic
^



How does it work?

Smoothing and coarse correction complementary!

Sample two-level theory
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• Error with increasing
Jacobi iterations

• Can be represented
on coarse mesh
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A Massively Parallel
Algebraic Multigrid Solver

Smoothed Aggregation Capabilities
• Scalar & PDE systems (elliptic)

• Symmetric, non-symmetric
• variable dofs/block support (limited)

• Aggregation with arbitrary coarsening, load balancing, …
Smoothers
• Gauss-Seidel, polynomial, block methods, ILU,  domain methods, ...

Package Leveraging
• Trilinos (Epetra, Ifpack, etc.)
• External: PETSc, SuperLU, Arpack, Parasails, kLU, ParMETIS, Zoltan, …

• PETSc applications can construct and apply essentially any Trilinos
preconditioner/iterative method, KSP solvers as smoothers

Interfaces
• C++, matlab, matlab-like, web-based

http://trilinos.sandia.gov/packages/ml
• Developer's Guide, User's Guide, MLAPI



A Massively Parallel
Algebraic Multigrid Solver



• Smoothing doesn’t damp error in expected ways
– Anisotropic problems, bad aspect ratios
– Non-elliptic operators
– …

• Coarse operator does not preserve key properties
– Large PDE coefficient variations
– Stability
– M-matrix
– Null space

• PDE Systems
– Constraints

• Nonsymmetry

εuxx + uyy = f       &     Jacobi smoothing

What could possibly go wrong?
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– Non-elliptic operators
– …

• Coarse operator does not preserve key properties
– Large PDE coefficient variations
– Stability
– M-matrix
– Null space

• PDE Systems
– Constraints

• Nonsymmetry

What could possibly go wrong?

fine scale features & coarse levels



• Smoothing doesn’t damp error in expected ways
– Anisotropic problems, bad aspect ratios
– Non-elliptic operators
– …

• Coarse operator does not preserve key properties
– Large PDE coefficient variations
– Stability
– M-matrix
– Null space

• PDE Systems
– Constraints

• Nonsymmetry

What could possibly go wrong?

Jacobi & Gauss-Seidel
smoothers divide by the
diagonal???



Following Physics/ Irregular Coarsening
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Detection:

Special Prolongators

Strong



Strength of Connection

– Matrix coefficients

– zt = - Az + δi  with z(0) = 0                          yt = - A y with y(0) = δi

– z (t) = A-1 δi - e–At A-1 δi + e–At δi  ⇒

–  matrix coefs ≤ ODE ≤ matrix inverse coefs
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zt (Δt) ≈ Δt A δi + δi

z(∞) = A-1 δi{
Local discretization errors/lack

of mass matrix

Too global !!
Au:  (εux)x   ,  ux(0) = 0, u(1) = 0

ε=                                  .

Column of

A -1 @ x = .5

 .001    x ≤  0.5

 1.0     x > 0.5{



New Strength Measure

z = (I - Δt D-1 A)k δi

Δt chosen for stability  &  k chosen to reduce δi by ½

Strength ≡ How well can z be interpolated within neighborhood?

minx || B x – z ||Q  with  <B x – z, e>Q = 0

– B is simple prolongator
– x & z : nearest neighbor subset of i

– Scalar/piecewise constant case ⇒
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AMG convergence & strength

300k
75k
20k

≈DOFs

1415
1213
1110

ODEcoefs

110k
14k
2k

≈DOFs

18129
1367
1333

ODEcoefs

222964x64
128x128

32x32

mesh

23132

1619

ODEcoefs

elasticity

diffusion

recirculating
flow



Incompressible Fluid Flow

• Pressure Projection Methods
– Explicit update for u (or well-conditioned solve)
– Laplace solve for p

• Fully Implicit + AMG applied to 2x2 system

• Fully Implict + Block Preconditioners
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B: divergence , BT = gradient



Pressure Poisson solves

• air/sand jet

• He Plume problem

4.2442.95Time
(seconds)

22196Its

Geometric
coarsen

Isotropic
coarsen

4.8617.22Time
(seconds)

44161Its

Geometric
coarsen

Isotropic
coarsen

(16384 procs)



All at once …

• Group Dofs @ nodes
• Construct graph for block matrix

– generalize strength
• Generalize P

– Easiest :      (vh)ij = f(  (vH)ij )

                         where v is one particular component

• Use heavy smoothers
– Block Gauss-Seidel, ILU, subdomain solves

• Aggressive coarsening

Coarse level stability is a concern for Saddle Pt. Problems!!



Arbitrary Matrix Coarsening

• Previous: small aggregates
– ≈ 3 nodes in each dimension
– several levels, RAP products can be expensive

• New: aggressive coarsening
– graph partitioning to create larger aggregates
– Only a few levels, cheaper RAP products

proc 1-level DD/ ILU

DOFs iter/N sec/N medium coarse iter/N sec/N

16 636168 76 133 9888 152 38 132

128 4.84M 201 164 96416 1928 72 138

1024 37.8M 480 281 586360 9160 113 176

3-level (ILU/ILU/KLU)
CVD

Reactor

proc
DOFs iter/N sec/N mediumcoarse iter/N sec/N

32 2.13M 161 70 24930 290 89 47

256 16.4M 320 167 2E+05 2265 101 55

2048 129.1M 552 450 15.1M 17805 113 105

DD/ILUT 3-level (GS/ILU/KLU)

Transient
LES-k

NPN BJT
30.261.4858.0112 M

3-level /new P3-level1 levelDOFs



Block Preconditioners

                                                                         S = -GTF-1G

                                                                                     ⇒ 2
iterations

What to choose for Q -1?
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A couple of
AMG cycles

for F -1 & Q -1



Commuting

Suppose

F G =GFp

Then,

Or        Fp = (G G) -1 G TF G    ⇒

IG)QF(GG)(GFQ != "
1111 --T-T

p

-

e.g., Stokes
G = ∇,  F = Δ,

Fp = Δ
Δ-1

111 !!
""= FGGQ T-

S

Issues:
– Discrete vs. differential commuting
– Stabilization
– Boundary conditions

AMG cycles
for Δ-1



Performance

procsPC-D1 level DDMeshRe

6444.7 (2397.7)637.2 (18646.0)16.8 M

838.7 (1797.2)132.4 (2676.1)2.1 M50

6424.7 (1997.7)667.2 (20908.0)16.8 M

821.7 (1507.5)151.2 (2004.1)2.1 M10
Flow over

Obstruction

AMG
sweeps

Lid driven cavity, exact sub-solvesBackward Facing step , exact sub-solves



Concluding Remarks

• AMG methods continue to evolve according to application needs
• Care needs to be exercised, e.g.

– Anisotropic
– PDE constraints
– Nonsymmetric, heterogeneous, etc.

• Strength of connection Important
• Incompressible flow

– Pressure projection
– All-at-once
– Block preconditioners

• AMG is often effective even if not always optimal

I hope to learn more about GeoScience problems


