

Multigrid & Optimal Solvers

Ray Tuminaro

Bochev, Elman, Gee, Howle, Hu, Lin, Sala, Schroder, Shuttleworth, Siefert, Shadid

GeoMath08

Sept, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What is Multigrid ?

Solve
$$A_3u_3 = f_3$$

Basic idea:

- Develop coarse approximations
- Accelerate convergence via coarse iterations to efficiently propagate information

$$P_{2} \downarrow \downarrow R_{2}$$

1111

Sandia National Laboratories

Smooth
$$A_3u_3=f_3$$
. Set $f_2 = R_2r_3$.
Smooth $A_2u_2=f_2$. Set $f_1=R_1r_2$.
Solve $A_1u_1=f_1$ directly.
Smooth $A_2u_2=f_2$. Set $f_1=R_1r_2$.
Solve $A_1u_1=f_1$ directly.
Smooth $A_2u_2=f_2$.

How does it work?

Smoothing and coarse correction complementary!

- Error with increasing Jacobi iterations
- Can be represented on coarse mesh

A Massively Parallel Algebraic Multigrid Solver

Smoothed Aggregation Capabilities

- Scalar & PDE systems (elliptic)
 - Symmetric, non-symmetric
 - variable dofs/block support (limited)
- Aggregation with arbitrary coarsening, load balancing, ...

Smoothers

• Gauss-Seidel, polynomial, block methods, ILU, domain methods, ...

Package Leveraging

- Trilinos (Epetra, Ifpack, etc.)
- External: PETSc, SuperLU, Arpack, Parasails, kLU, ParMETIS, Zoltan, ...
 - PETSc applications can construct and apply essentially any Trilinos preconditioner/iterative method, KSP solvers as smoothers

Interfaces

• C++, matlab, matlab-like, web-based

http://trilinos.sandia.gov/packages/ml

• Developer's Guide, User's Guide, MLAPI

A Massively Parallel Algebraic Multigrid Solver

- Smoothing doesn't damp error in expected ways
 - Anisotropic problems, bad aspect ratios
 - Non-elliptic operators
 - ...
- Coarse operator does not
 - Large PDE coefficient
 - Stability
 - M-matrix
 - Null space
- PDE Systems
 - Constraints
- Nonsymmetry

- Anisotropic problems, bad aspect ratios
- Non-elliptic operators
- Coarse operator does not
 - Large PDE coefficient
 - Stability

- M-matrix
- Null space
- PDE Systems – Constraints

Nonsymmetry

Jacobi & Gauss-Seidel smoothers divide by the diagonal???

– matrix coefs ≤ ODE ≤ matrix inverse coefs

Local discretization errors/lack of mass matrix

New Strength Measure

 $z = (I - \Delta t D^{-1} A)^k \delta_i$

 Δt chosen for stability & k chosen to reduce δ_i by $\frac{1}{2}$

Strength = How well can z be interpolated within neighborhood?

$$min_x || B x - z ||_Q$$
 with $< B x - z, e >_Q = 0$

- B is simple prolongator
- -x & z: nearest neighbor subset of *i*

- Scalar/piecewise constant case \Rightarrow $S_{ij} = \left| \frac{z_j}{z_i - z_j} \right|$

AMG convergence & strength

≈DOFs	coefs	ODE
2k	33	13
14k	67	13
110k	129	18

elasticity

meshcoefsODE32x32191664x642922128x12813223recirculating flowImage: Image: Image:

Incompressible Fluid Flow

$$\begin{pmatrix} \boldsymbol{F} & \boldsymbol{B}^T \\ \boldsymbol{B} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \boldsymbol{f}$$

B: divergence, B^T = gradient

- Pressure Projection Methods
 - Explicit update for u (or well-conditioned solve)
 - Laplace solve for p
- Fully Implicit + AMG applied to 2x2 system
- Fully Implict + Block Preconditioners

Pressure Poisson solves

air/sand jet

	lsotropic coarsen	Geometric coarsen
lts	196	22
Time (seconds)	42.95	4.24

• He Plume problem (16384 procs)

	lsotropic coarsen	Geometric coarsen
lts	161	44
Time (seconds)	17.22	4.86

All at once ...

- Group Dofs @ nodes
- Construct graph for block matrix
 - generalize strength
- Generalize P

- Easiest :
$$(v^{h})_{ij} = f((v^{H})_{ij})$$

where v is one particular component

- Use heavy smoothers
 - Block Gauss-Seidel, ILU, subdomain solves
- Aggressive coarsening

Arbitrary Matrix Coarsening

- New: <u>aggressive</u> coarsening
 - graph partitioning to create larger aggregates
 - Only a few levels, cheaper RAP products

		proc DD/IL		D/ILUT	JT 3-level (GS/ILU/KLU)					
Transient			DOFs	iter/	N sec,	/N mediur	rcoarse	e iter/	'N se	ec/N
LES-k		32	2.13M	16	1	70 24930	290		89	47
		256	16.4M	32	0 1	67 2E+05	2265	1	01	55
	,	2048	129.1№	1 55	2 4	<mark>50</mark> 15.1M	1780	5 1	13	105
_			1-le	vel DD	el DD/ ILU 3-level			I (ILU/ILU/KLU)		
CVD	CVD		DOFs	iter/N	sec/N	medium	coarse	iter/N	sec/N	J
Reactor	16	636168	76	133	9888	152	38	132	2	
		128	4.84M	201	164	96416	1928	72	138	
		1024	37.8M	480	281	586360	9160	113	176	5
NPN BJT			DOFs	1 le	vel	3-level	3-10	evel /ne	w P	
			12 M	858	3.0	61.4		30.2		

Block Preconditioners

$$\begin{bmatrix} \mathcal{F} & \mathcal{G} \\ \mathcal{G}^{\mathcal{T}} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} I & \mathbf{0} \\ \mathcal{G}^{\mathcal{T}} \mathcal{F}^{-1} & I \end{bmatrix} \begin{bmatrix} \mathcal{F} & \mathcal{G} \\ \mathbf{0} & \mathcal{S} \end{bmatrix} \qquad \mathcal{S} = -\mathcal{G}^{\mathcal{T}} \mathcal{F}^{1} \mathcal{G}$$

$$\begin{bmatrix} \mathcal{F} & \mathcal{G} \\ \mathcal{G}^{\mathsf{iterations}} = \begin{bmatrix} I & 0 \\ \mathcal{G}^{\mathcal{T}} \mathcal{F}^{-1} & I \end{bmatrix} \quad \text{with} \quad \mathcal{M} = \begin{bmatrix} \mathcal{F} & \mathcal{G} \\ 0 & \mathcal{S} \end{bmatrix} \quad \Rightarrow \mathbf{2}$$

$$\mathcal{M} = \begin{bmatrix} \mathcal{F} & \mathcal{G} \\ \mathcal{Q} \end{bmatrix}^{-1} \qquad \begin{array}{c} \text{A couple of} \\ \text{AMG cycles} \\ \text{for } \mathcal{F}^{-1} \& Q^{-1} \end{array}$$

What to choose for Q^{-1} ?

Commuting

Suppose $\mathcal{F} \mathcal{G} = \mathcal{G} \mathcal{F}_{p}$ Then, Δ^{-1} $Q^{-1} = \mathcal{F}_{p}(\mathcal{G}^{T}\mathcal{G})^{-1} \rightarrow (\mathcal{G}^{T}\mathcal{F}^{-1}\mathcal{G})Q^{-1} \approx I$

Or
$$\mathcal{F}_{p} = (\mathcal{G} \mathcal{G})^{-1} \mathcal{G}^{T} \mathcal{F} \mathcal{G} \Rightarrow Q^{-1} = \Delta^{-1} \mathcal{G}^{T} \mathcal{F} \mathcal{G} \Delta^{-1}$$

Issues:

- Discrete vs. differential commuting
- Stabilization
- Boundary conditions

	Re	Mesh	1 level DD	PC-D	procs	7
Flow over Obstruction	10	2.1 M	151.2 (2004.1)	21.7 (1507.5)	8	
AMG		16.8 M	667.2 (20908.0)	24.7 (1997.7)	64	
sweeps	50	2.1 M	132.4 (2676.1)	38.7 (1797.2)	8	
		16.8 M	637.2 (18646.0)	44.7 (2397.7)	64	

Concluding Remarks

- AMG methods continue to evolve according to application needs
- Care needs to be exercised, e.g.
 - Anisotropic
 - PDE constraints
 - Nonsymmetric, heterogeneous, etc.
- Strength of connection Important
- Incompressible flow
 - Pressure projection
 - All-at-once
 - Block preconditioners
- AMG is often effective even if not always optimal

I hope to learn more about GeoScience problems

