Multigrid \& Optimal Solvers

Ray Tuminaro

Bochev, Elman, Gee, Howle, Hu, Lin, Sala, Schroder, Shuttleworth, Siefert, Shadid

GeoMath08

Sept, 2008

What is Multigrid?

Solve $\mathrm{A}_{3} u_{3}=f_{3}$
Basic idea:

- Develop coarse approximations
- Accelerate convergence via Accelerate convergence via
coarse iterations to efficiently propagate information

[^0]
Algebraic What is Multigrid ? \wedge

Solve $\mathrm{A}_{3} u_{3}=f_{3}$

- Construct Graph \& Coarsen
- Determine $P_{i} \& R_{i}$ sparsity pattern
- Determine P_{i} \& R_{i} 's coefs
- Project: $\mathrm{A}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}+1} \mathrm{P}_{\mathrm{i}}$

Smooth $\mathrm{A}_{3} u_{3}=f_{3}$. $\operatorname{Set} f_{2}=\mathrm{R}_{2} r_{3}$. Smooth $\mathrm{A}_{2} u_{2}=f_{2}$. Set $f_{1}=\mathrm{R}_{1} r_{2}$. Set $u_{2}=u_{2}+\mathrm{P}_{1} \mathrm{u}_{1}$. Smooth $\mathrm{A}_{2} u_{2}=f_{2}$. Solve $\mathrm{A}_{1} u_{l}=f_{1}$ directly.

$$
\text { Set } u_{3}=u_{3}+\mathrm{P}_{2} u_{2} \text {. Smooth } \mathrm{A}_{3} u_{3}=f_{3} \text {. }
$$

Sandia
National Laboratories

How does it work?

Smoothing and coarse correction complementary!

- Error with increasing Jacobi iterations
- Can be represented on coarse mesh

A Massively Parallel

 Algebraic Multigrid Solver
Smoothed Aggregation Capabilities

- Scalar \& PDE systems (elliptic)
- Symmetric, non-symmetric
- variable dofs/block support (limited)
- Aggregation with arbitrary coarsening, load balancing, ...

Smoothers

- Gauss-Seidel, polynomial, block methods, ILU, domain methods, ...

Package Leveraging

- Trilinos (Epetra, Ifpack, etc.)
- External: PETSc, SuperLU, Arpack, Parasails, kLU, ParMETIS, Zoltan, ...
- PETSc applications can construct and apply essentially any Trilinos preconditioner/iterative method, KSP solvers as smoothers

Interfaces

- C++, matlab, matlab-like, web-based

http://trilinos.sandia.gov/packages/ml

- Developer's Guide, User's Guide, MLAPI

A Massively Parallel Algebraic Multigrid Solver

What could possibly go wrong?

- Smoothing doesn't damp error in expected ways
- Anisotropic problems, bad aspect ratios
- Non-elliptic operators
- Coarse operator does not

$$
\varepsilon u_{x x}+u_{y y}=f \quad \& \quad \text { Jacobi smoothing }
$$

- Large PDE coefficient
- Stability
- M-matrix
- Null space
- PDE Systems
- Constraints
- Nonsymmetry

What could possibly go wrong?

- Smoothing doesn't damp error in ex
fine scale features \& coarse levels
- Anisotropic problems, bad aspe
- Non-elliptic operators
- Coarse operator does not pr
- Large PDE coefficient variations
- Stability
- M-matrix
- Null space
- PDE Systems
- Constraints

- Nonsymmetry

What could possibly go wrong?

- Smoothing doesn't damp error in expected ways
- Anisotropic problems, bad aspect ratios
- Non-elliptic operators
- Coarse operator does not
- Large PDE coefficient
- Stability
- M-matrix
- Null space
- PDE Systems
- Constraints
- Nonsymmetry

Following Phvsircol Irrenular Cnarsening

Detection:

Special Prolongators

Too global !!
$A u:\left(\varepsilon u_{x}\right)_{x}, u_{x}(0)=0, u(1)=0$
$-\left\lvert\, \quad \varepsilon=\left\{\begin{array}{ll}.001 & x \leq 0.5 \\ 1.0 & x>0.5\end{array}\right.\right.$.
-
Column of
$A^{-1} @ x=.5$

$$
\begin{gathered}
y_{t}=-A y \text { with } y(0)=\delta_{i} \\
z_{t}(\Delta t) \approx \Delta t A \delta_{i}+\delta_{i} \\
z(\infty)=\mathrm{A}^{-1} \delta_{i}
\end{gathered}
$$

- matrix coefs $\leq \mathrm{ODE} \leq$ matrix inverse coefs

Local discretization errors/lack of mass matrix

New Strength Measure

$$
z=\left(I-\Delta t D^{-1} A\right)^{k} \delta_{i}
$$

Δt chosen for stability $\& k$ chosen to reduce δ_{i} by $1 / 2$

Strength \equiv How well can z be interpolated within neighborhood?

$$
\min _{x}\|B x-z\|_{Q} \text { with }<B x-z, e>_{Q}=0
$$

- B is simple prolongator
$-x \& z$: nearest neighbor subset of i
- Scalar/piecewise constant case $\Rightarrow \quad S_{i j}=\left|\frac{z_{j}}{z_{i}-z_{j}}\right|$

AMG convergence \& strength

\approx DOFs	coefs	ODE
20 k	10	11
75 k	13	12
300 k	15	14
diffusion		

Incompressible Fluid Flow

$$
\left(\begin{array}{cc}
F & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=f \quad B \text { divergence }, B^{T}=\text { gradient }
$$

- Pressure Projection Methods
- Explicit update for u (or well-conditioned solve)
- Laplace solve for p
- Fully Implicit + AMG applied to 2×2 system
- Fully Implict + Block Preconditioners

Pressure Poisson solves

- air/sand jet

	Isotropic coarsen	Geometric coarsen
Its	196	22
Time (seconds)	42.95	4.24

- He Plume problem (16384 procs)

	Isotropic coarsen	Geometric coarsen
Its	161	44
Time (seconds)	17.22	4.86

All at once ...

- Group Dofs @ nodes
- Construct graph for block matrix
- generalize strength
- Generalize P
- Easiest: $\left.\quad\left(v^{h}\right)_{i j}=f\left(v^{H}\right)_{i j}\right)$

where v is one particular component
- Use heavy smoothers
- Block Gauss-Seidel, ILU, subdomain solves
- Aggressive coarsening

Coarse level stability is a concern for Saddle Pt. Problems!!

Arbitrary Matrix Coarsening

- New: aggressive coarsening
- graph partitioning to create larger aggregates
- Only a few levels, cheaper RAP products :

Block Preconditioners

$$
\left.\begin{array}{c}
{\left[\begin{array}{cc}
\mathcal{F} & G \\
\mathcal{G}^{\mathcal{T}} & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\mathcal{G}^{\mathcal{T}} \mathcal{F}^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
\mathcal{F} & G \\
0 & S
\end{array}\right] \quad S=-\mathcal{G}^{\mathcal{T}} \mathcal{F}^{1} \mathcal{G}} \\
{\left[\begin{array}{cc}
\mathcal{F} & G \\
\mathcal{G}^{\text {iterationts }}=
\end{array}\right]} \\
\mathcal{G}^{\mathcal{T}} \mathcal{F}^{-1} \\
I
\end{array}\right] \text { with } \mathcal{M}=\left[\begin{array}{cc}
\mathcal{F} & G \\
0 & S
\end{array}\right] \Rightarrow \mathbf{2} \quad . \quad \begin{array}{cc}
\end{array}
$$

$$
\mathcal{M}=\left[\begin{array}{cc}
(\mathcal{F} & \mathcal{G} \\
& @
\end{array}\right]^{-1} \quad\left[\begin{array}{c}
\text { A couple of } \\
\text { AMG cycles } \\
\text { for } F^{-1} \& Q^{-1}
\end{array}\right]
$$

What to choose for Q^{-1} ?

Commuting

Suppose

$$
\mathcal{F} G=G F_{\mathrm{p}}
$$

$$
\begin{gathered}
\text { e.g., Stokes } \\
G=\nabla, F=\Delta, \\
F_{\mathrm{p}}=\Delta
\end{gathered}
$$

Then,

$$
Q^{-1}=\overbrace{F_{p}\left(G^{T} G\right)^{-1}} \rightarrow \overbrace{\left(G^{T} F^{-1} G\right)} Q^{-1} \approx I
$$

Or

$$
F_{\mathrm{p}}=(G G)^{-1} G^{\top} F G \Rightarrow Q^{-1}=\Delta^{-1} G^{T} F G \Delta^{-1}
$$

Issues:

- Discrete vs. differential commuting

> AMG cycles for Δ^{-1}

- Stabilization
- Boundary conditions

Performance

Backward Facing step, exact sub-solves

Lid driven cavity, exact sub-solves

Flow over Obstruction	Re	Mesh	1 level DD	PC-D	procs
	10	2.1 M	151.2 (2004.1)	21.7 (1507.5)	8
AMG sweeps		16.8 M	667.2 (20908.0)	24.7 (1997.7)	64
	50	2.1 M	132.4 (2676.1)	38.7 (1797.2)	8
		16.8 M	637.2 (18646.0)	44.7 (2397.7)	64

Concluding Remarks

- AMG methods continue to evolve according to application needs
- Care needs to be exercised, e.g.
- Anisotropic
- PDE constraints
- Nonsymmetric, heterogeneous, etc.
- Strength of connection Important
- Incompressible flow
- Pressure projection
- All-at-once
- Block preconditioners
- AMG is often effective even if not always optimal

I hope to learn more about GeoScience problems

[^0]: Smooth $\mathrm{A}_{3} u_{3}=f_{3}$. $\operatorname{Set} f_{2}=\mathrm{R}_{2} r_{3}$.
 Smooth $\mathrm{A}_{2} u_{2}=f_{2}$. Set $f_{1}=\mathrm{R}_{1} r_{2}$.

 Set $\begin{aligned} & \text { Set } u_{3}=u_{3}+\mathrm{P}_{2} u_{2} \text {. Smooth } \mathrm{A}_{3} u_{3}=f_{3} \text {. } \\ & \text { Set } u_{2}=u_{2}+\mathrm{P}_{1} \mathrm{u}_{1} \text {. Smooth } \mathrm{A}_{2} u_{2}=f_{2} \text {. }\end{aligned}$

