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Crustal Deformation Modeling

Elasticity problems where geometry does not change significantly

Quasi-static modeling associated with earthquakes

• Strain accumulation associated with interseismic deformation

• What is the stressing rate on faults X, Y, and Z?
• Where is strain accumulating in the crust?

• Coseismic stress changes and fault slip

• What was the slip distribution in earthquake A?
• How did earthquake A change the stresses on faults X, Y, and Z?

• Post-seismic relaxation of the crust

• What rheology is consistent with observed post-seismic deformation?
• Can aseismic creep or afterslip explain the deformation?
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Crustal Deformation Modeling

Elasticity problems where geometry does not change significantly

Volcanic deformation associated with magma chambers and/or dikes

• Inflation

• What is the geometry of the magma chamber?
• What is the potential for an eruption?

• Eruption

• Where is the deformation occurring?
• What is the ongoing potential for an eruption?

• Dike intrusions

• What the geometry of the intrusion?
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Crustal Deformation Modeling

Overview of workflow for typical research problem
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Governing Equations

Elasticity equation

σij,j + fi = ρü in V, (1)

σijnj = Ti on ST , (2)

ui = u0
i on Su, and (3)

Rki(u+
i − u

−
i ) = dk on Sf . (4)

Multiply by weighting function and integrate over the volume,

−
∫

V

(σij,j + fi − ρüi)φi dV = 0 (5)

After some algebra,

−
∫

V

σijφi,j dV +
∫

ST

Tiφi dS +
∫

V

fiφi dV −
∫

V

ρüiφi dV = 0 (6)
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Governing Equations

Writing the trial and weighting functions in terms of basis (shape)
functions,

ui(xi, t) =
∑
m

am
i (t)Nm(xi), (7)

φi(xi, t) =
∑

n

cni (t)Nn(xi). (8)

After some algebra, the equation for vertex degree of freedom i of vertex
n is

−
∫

V

σijN
n
,j dV+

∫
ST

TiN
n dS+

∫
V

fiN
n dV−

∫
V

ρ
∑
m

äm
i N

mNn dV = 0

(9)
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Governing Equations

Using numerical quadrature we convert the integrals to sums over the
cells and quadrature points

−
∑

vol cells

∑
quad pts

σijN
n
,jwq|Jcell|+

∑
surf cells

∑
quad pts

TiN
nwq|Jcell|

+
∑

vol cells

∑
quad pts

fiN
nwq|Jcell|

−
∑

vol cells

∑
quad pts

ρ
∑
m

äm
i N

mNnwq|Jcell| = ~0 (10)
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Quasi-static Solution

Neglect inertial terms

Form system of algebric equations

A(t)~u(t) = ~b(t) (11)

where

Anm
ij (t) =

∑
vol cells

∑
quad pts

1
4
Cijkl(t)(Nm

,l +Nm
,k )(Nn

,j +Nn
,i)wq|Jcell| (12)

bi(t) =
∑

surf cells

∑
quad pts

Ti(t)Nnwq|Jcell|+
∑

vol cells

∑
quad pts

fi(t)Nnwq|Jcell|

(13)

and solve for ~u(t).
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Problem Setup

• Which suite of tools should I use?

• Is there an analytic or semi-analytic solution?
• Can I solve a 2-D problem or do I need to solve a 3-D problem?

• Which cell type is appropriate?

• Can I mesh the geometry of the domain with hexahedral cells?
• How will the discretization size vary in space?

• What factors will control the resolution that I need?

• What length scales are important in my problem?
• What time scales are important?
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Basis Functions

~u(~x, t) =
∑

nN
n(~x)~un(t)
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Varying Cell Size

Stair-step Smooth
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Potential Pitfalls

• Over/under resolving the deformation

• Poor mesh quality
• Using resolution much finer than constraints
• Failing to resolve stress concentrations

• Failing to check the simulation results against intuition

• Do the results make sense?
• How close are the results to an anlytical solution?

• Choosing the wrong suite of tools or parameters

• Nonlinear problems require nonlinear solvers
• Propagating seismic waves require inertial terms
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Poor Mesh Quality

Distorted cells

The most distorted cell controls the rate convergence (quasi-static
problems) and the time step (dynamic problems).
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Hints, Tips, and Tricks

• Start at the coarsest resolution possible

• Work through the entire problem at a coarse resolution

• Eliminate obstacles using simple test problems that run quickly
• Verify workflow is feasible and meets desired objective

• Increase resolution as needed

• Only run large problems when the kinks are worked out
• Verify solution is converging

• Double-check inputs and outputs at every stage

• Did the software do what I think I told it to do?
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