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Pamela Jansma (Arkansas), Falk Amelung (Miami), Timothy Dixon (Miami), Sigurjon Jonsson (King
Abdullah Univ.), Claude Prepetit (Bureau des Mines, Haiti), Roberte Momplaisir (Universit'e d’Etat d’Haiti)




Deaths per earthquake (x1000)

The 2010 Haiti earthquake caused a disproportionate
amount of fatalities for a M7 earthquake
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250,000 residences and 30,000 commercial buildings were severely damaged




An estimated 8 billion dollars of damage — 120% of Haiti’s GDP




500 schools were destroyed
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1.5 million homeless




The northern Caribbean plate is a broadly deforming boundary where highly
oblique convergence is partitioned into thrust and strike-slip fault zones.
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Haiti has a long history of large earthquakes,
though none in the past century until 2010
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GPS Observed Secular Velocity Structure
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A block model was used to invert GPS and earthquake slip
vector data to infer long-term slip rates on the active faults
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This allows us to define long-term slip rates on the major faults
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SUMMARY
The northeastern Caribbean provides a natural laboratory to investigate strain partitioning,
its causes and its consequences on the stress regime and tectonic evolution of a subduction
plate boundary. Here, we use GPS and earthquake slip vector data to produce a present-day
kinematic model that accounts for secular block rotation and elastic strain accumulation,
with variable interplate coupling, on active faults. We confirm that the oblique convergence
between Caribbean and North America in Hispaniola is partitioned between plate boundary
parallel motion on the Septentrional and Enriquillo faults in the overriding plate and plate-
boundary normal motion at the plate interface on the Northern Hispaniola Fault. To the east,
the Caribbean/North America plate motion is accommodated by oblique slip on the faults
bounding the Puerto Rico block to the north (Puerto Rico subduction) and to the south
(Muertos thrust), with no evidence for partitioning. The spatial correlation between interplate
coupling, strain partitioning and the subduction of buoyant oceanic asperities suggests that
the latter enhance the transfer of interplate shear stresses to the overriding plate, facilitating
/ strike-slip faulting 1n the overriding plate. The model slip rate deficit, together with the dates of
large historical earthquakes, indicates the potential for a large (M, 7.5 or greater) earthquake
/ on the Septentrional fault in the Dominican Republic. Similarly, the Enriquillo fault in Haiti
is currently capable of a M,,7.2 earthquake if the entire elastic strain accumulated since the
/ last major earthquake was released in a single event today. The model results show that the ~
Puerto Rico/Lesser Antilles subduction thrust is only partially coupled, meaning that the plate
/ interface is accumulating elastic strain at rates slower than the total plate motion. This does not ~
preclude the existence of isolated locked patches accumulating elastic strain to be released in ~
/ future earthquakes, but whose location and geometry are not resolvable with the present data ~
distribution. Slip deficit on faults from this study are used in a companion paper to calculate
/ interseismic stress loading and, together with stress changes due to historical earthquakes, ~
/ derive the recent stress evolution in the NE Caribbean. ~
strike-slip faulting in the overriding plate. The model slip rate deficit, together with the dates of
large historical earthquakes, indicates the potential for a large (M, 7.5 or greater) earthquake
on the Septentrional fault in the Dominican Republic. Similarly, the Enriquillo fault in Haiti
is currently capable of a M,7.2 earthquake if the entire elastic strain accumulated since the

last major earthquake was released in a single event today. The model results show that the
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The 2010 earthquake occurred where forecast, though only broke a
portion of the inferred 1751 rupture surface
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GPS Measured Coseismic Displacements
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ALOS interferogram (University of Miami)
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Coastal observations show primarily uplift

%USGS ﬁﬁ%h v i Pre-earthqualse lowtide

science for a changing world =

Coast stable or
slight subsidence




No Surface rupture!
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Coseismic slip distibution inferred from inversion of GPS and InSAR data:
Not the Enriquillo Fault!
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Aftershocks are well explained by Coulomb stress changes
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Coulomb stress on the Enriquillo Fault in the
Port-au-Prince region has been reduced
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Preliminary Finite Element model of coseismic stress changes
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Predicted postseismic displacements after 3 years
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First several months of continuous GPS data
(too early for a postselsmlc transient to be readily visible)
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February’s GPS Campaign
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Tent city in Port-au-Prince
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