
CitcomS, developed and maintained by the Computational Infrastructure for Geodynamics (CIG), is a finite element code designed to solve thermal convection problems relevant to Earth's mantle, and is released under the GNU General Public License. The software is now at 
version 3.0.3. All CIG software can be found via the CIG website, http://geodynamics.org.

CitcomS: Compressible Mantle Convection

Parallel Code Written in C, the code runs on a variety of parallel processing computers, including 
shared and distributed memory platforms. In an effort to increase the functionality of CitcomS to 
include greater control during simulations on large parallel systems, the software has been 
reengineered from previous versions of CitcomS to work with a Python-based modeling framework 
called Pyre. With Pyre, CitcomS can be dynamically coupled with other CitcomS simulations or with 
other codes such as SNAC, which solves crustal and lithospheric problems.  

Full Spherical or Restricted Region Options CitcomS offers two variants, CitcomSFull and 
CitcomSRegional; the first solves for problems within a full spherical domain, and the second, for a 
restricted domain of a full sphere. Although the code is capable of solving many different kinds of 
convection problems using the flexibility of finite elements, there are aspects of CitcomS which make 
it well-suited for solving problems in which the plate tectonic history is incorporated. You easily access 
either geometry by simply changing command line options.
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This example solves for thermo-chemical 
convection within a full spherical shell domain. 
Composition heterogenity exists in the Earth 
mantle. The density anomalies due to the 
composition heterogenity, as well as due to the 
thermal heterogeneity, drive the convection 
flow. 

In this scenario, the mantle is initially layered. 
The bottom layer is compositionally distinct and 
is denser with a buoyancy number of 0.4. The 
model is purely bottom heated with a Rayleigh 
number 107. The boundary conditions are 
constant temperature and free-slip.
 
The results for this problem are shown in Fig. 3. 
The buoyancy ratio in this model is too low to 
stabilize the chemical layer. A few thermo-
chemical plumes are rising from the lower 
mantle, especially the ones at the 4, 11, and 12 
o'clock directions. The resolution of this model 
is fairly low. The composition isosurface is 
slightly discontinuous across the cap boundary. 
A model of higher resolution will not have this 
kind of artifact.
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Fig. 3: Result of Thermo-Chemical 
Convection  The composition and velocity field 
at the 20th step. The arrows are the velocity 
vectors. The composition field is shown in an 
isosurface of 0.7 and in a cross section.

About CitcomS  The fundamental basis for the numerical solution of any time-dependent convection 
problem is the sequential solution of an equation of motion and an energy equation. Convection 
problems are initially valued with boundary conditions, including all of the problems which are solved 
with CitcomS. The normal sequence of steps for the solution of convection problems starts with an 
initial temperature field. First, the momentum equation is solved. The solution of this equation gives 
us the velocity from which we then solve the advection-diffusion equation, giving us a new 
temperature. CitcomS uses this interleaved strategy. Variable viscosity, including temperature-, 
pressure-, position-, composition-, and stress-dependent viscosity are all possible, although they may 
not be fully implemented in the current version. 

There are two forms of meshes and geometries for CitcomS. By 
default CitcomS will produce a mesh within a regional geometry 
that is bound by lines of constant latitude and longitude. There is 
an option to generate a global mesh of a spherical shell. For a 
global mesh, CitcomS is also capable of generating a mesh for an 
entire spherical shell in which elements in map view are 
approximately equal in area. In the full spherical mode, CitcomS 
has 12 caps numbered 0 to 11 (see Fig. 1).
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Numerical Methods Meshes and Geometry

The governing equations are solved with the finite element method1. CitcomS employs an Uzawa 
algorithm to solve the momentum equation coupled with the continuity constraints2,3. The energy 
equation is solved with a Streamline-Upwind Petrov-Galerkin method4. Brick elements are used, such 
as eight velocity nodes with trilinear shape functions and one constant pressure node for each 
element. The use of brick elements in 3D (or rectangular elements in 2D) is important for accurately 
determining the pressure, such as dynamic topography, in incompressible Stokes flow1. 



The discrete form of Eq. 1 and 2 may be written in the following matrix form:
(BT + C) u  = 0                            [Eq. 5]
Au + Bp   = f                             [Eq. 6]

where A is the "stiffness" matrix, u is a vector of unknown velocities, B is the discrete gradient 
operator, C is the second term in Eq. 1, p is a vector of unknown pressures, and f  is a vector 
composed of the body and boundary forces acting on the fluid. The individual entries of A, B, C and  
f  are obtained using a standard finite element formulation; see Zhong et al for the explicit entries5.

In the incompressible case, C is zero. Eq. 6 can be transformed by premultiplying by BT + A-1 and 
using Eq. 5  to eliminate the velocity unknowns:

BT + A-1 Bp   = BT + A-1  f                           [Eq. 7]
This equation is solved using the Uzawa algorithm, an established method for solving the 
minimization of a dual function6, which simultaneously yields the velocity field. A conjugate gradient 
scheme3,7 is used for this iteration and forms the basis for the technique used in CitcomS.

In the compressible case, there are two different strategies to solve Eq. 5 and 6. The first strategy is 
to add another layer of iterations when solving Eq. 7. The right-hand-side vector is updated by the 
velocity solution of the previous iteration. This equation can be solved using the same conjugate 
gradient scheme as the incompressible case.

BT + A-1 Bp   = BT + A-1  f  –  Cu (i-1)                       [Eq. 8]

The second strategy is to transform Eq. 6 by premultiplying by (BT + C)A-1 and using Eq. 5  to 
eliminate the velocity unknowns:

(BT + C)A-1 Bp   = (BT + C)A-1 f                        [Eq. 9]
This equation is solved using a bi-conjugate gradient stabilized scheme.



The linear system is solved by either a full multigrid or a conjugate gradient solver. The solver uses 
the additive Schwarz method, in which each processor solves the sub-linear system within its domain 
and communicates with neighboring processors to obtain a global solution.

Figure 2. Result of Thermo-Chemical Convection  The 
composition and velocity field at the 20th step. The arrows are the 
velocity vectors. The composition field is shown in an isosurface of 
0.7 and in a cross section.
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(ρui),i  = 0
– P,i  + (η(ui,j + uj,i – 2/3 uk,k δij )),i + δρgδir = 0
ρcP (T,t + uiT,t) = ρcPκT,ii + ραgur (T + T0) + Φ + ρ (QL,t + uiQL,i) = ρH

δρ = – αρ (T – Ta) + δρphΓ + δρchC

The parallel efficiency of the multigrid solver 
in CitcomS, scaling from 12 cores (the 
minimum required for a global model) to 
3072 cores, is about 55%. The weak scaling 
is conducted with 30K elements per core on 
the TACC Lonestar cluster. The efficiency is 
measured in CPU time per Uzawa iteration, in 
which one multigrid solve is performed. The 
number of Uzawa iterations for each solve 
decreases with the core count, due to mesh-
dependent convergence criterion.

Governing Equations

With CitcomS, the mantle is treated as an anelastic, compressible, viscous spherical shell under 
Truncated Anelastic Liquid Approximation. With these assumptions, thermal convection is governed 
by the equations for conservation of mass, momentum, and energy: 

(ρui),i  = 0                            [Eq. 1]
– P,i  + (η(ui,j + uj,i – 2/3 uk,k δij )),i + δρgδir = 0                            [Eq. 2]

ρcP (T,t + uiT,t) = ρcPκT,ii + ραgur (T + T0) + Φ + ρ (QL,t + uiQL,i) = ρH                             [Eq. 3]
  

where ρ is the density, u is the velocity, P is the dynamic pressure, η is the viscosity, δij  is the 
Kroneker delta tensor, δρ is the density anomaly, g is the gravitational acceleration, T is the 
temperature, T0 is the temperature at the surface, cP is the heat capacity, κ is the thermal diffusivity, 
α is the thermal expansivity, Φ is the viscous dissipation, QL is the latent heat, and H is the heat 
production rate. The expression X,y represents the derivative of X with respect to y, where i and j are 
spatial indices, r is the radial direction, and t is time. With phase transitions and temperature and 
composition variations, the density anomalies are:

δρ = – αρ (T – Ta) + δρphΓ + δρchC                            [Eq. 4]
where ρ is the radial profile of density,  Ta is the radial profile of adiabatic temperature, δρph is the 
density jump across a phase change, δρch is the density difference between the compositions, Γ is 
the phase function, and C is the composition. 
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Parallel Performance

The caps are approximately square in map view so that the 
edges of the square are oriented diagonally with respect to 
latitude and longitude. The four corners of the domain are 
connected by great circles (Fig. 2). CitcomS can further 
generate meshes such that additional processors are used 
to divide caps uniformly along the two edges of the caps 
(Fig. 2) as well as in radius. 

Fig. 1: Topological 
connectivity of the 12 caps. 
N is the north pole and S is the 
south pole. The red line marks 
the 0 degree meridian.

Fig. 2: Orthographic projection of processors from a full CitcomS mesh in which there are 
16 processors in map view for each cap. The CitcomS cap is shown as distinct colors while the 
processor domains within the caps are indicated by the intensity of the color. This example was 
produced for a run with 2 processors in radius such that the total number of processors was 
12x16x2=384.
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