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1 Introduction:

Magmatism, the flow of partially molten rock in the Earth’s interior, is an essential feature of global plate
boundaries and may be critical for maintaining the structure of global mantle convection. Melting and melt
transport also has fundamental controls on the chemical evolution of the planet. For all of these reasons,
understanding the dynamics and observable consequences ofmagma dynamics is of considerable interest to
geodynamicists and geochemists.
From a computational mathematics point of view, Magma Dynamics also provides one of the more dramatic
examples of coupled multi-physics problems in the Solid Earth sciences. In its simplest form, it describes the
inter-penetrating flow of a low-viscosity fluid in aviscously deformable permeable medium and is a consistent
coupling of Darcy flow of the fluid with Stokes flow for the solidmatrix. More complex formulations also
couple multi-component thermodynamics and reactive flow tothese deforming systems.
Considerable work has been done to explore and understand models of magma migration, and has demon-
strated a rich array of behavior ranging from non-linear magma waves, to chemical and mechanical localiza-
tion instabilities (see below). Computation has played a major part in these studies, but principally through
a series of carefully crafted “Hero Codes” each designed to explore a specific aspect of the dynamics or a
specific coupling. These studies show that small changes in assumptions of coupling (for example in con-
stitutive relationships) can cause significant changes in physical behavior which may require concomitant
changes in computational methods/solvers. For traditional codes, many of the computational “bets” (choice
of discretization, mesh, solver) are made well in advance and hardwired into these codes making the codes
fragile to change and or difficult to reuse. Given the generalcomplexity of multi-physics problems, it would
be preferable to provide more flexibility up front so that many of the critical bets can be deferred closer to run
time. In addition, however, it is critical to preserve much of the hard won insight into solvers, variable order-
ing and iterative schemes that have been shown to work, whileallowing easy substitution of other schemes.
Fortunately, there have been some recent innovations in computational science that appear to make much of
this possible.
Here we will briefly review the basic formulation and behavior of magma-dynamics, illustrate the computa-
tional issues and present new results that demonstrate a more unified framework for composing, solving and
exploring the sort of multi-physics problems common in solid earth geophysics.

2 PDE’s for Magma Migration

2.1 Formulation

There are several formulations available for magma dynamics , but McKenzie, 1984 [1] is probably the sim-

plest and best understood. We have recently reformulated it[2] as a consistent coupling of compressible Darcy

flow and Stokes to make it more tractable and more easily integrated with computational methods for mantle

convection. The key is to split the fluid pressureP into three components

P = Pl + P + P ∗ (1)

wherePl = ρ0
sgz is the reference background “lithostatic” pressure,P = (ζ−2η/3)∇·V is the “compaction”

pressure due to expansion or compaction of the solid andP ∗ includes all remaining contributions to the
pressure including dynamic pressure due to viscous shear ofthe matrix.

With these definitions we rewrite the equations for mass and momentum conservation as

Dφ
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ξ
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∇P ∗ = ∇· η
(

∇V + ∇VT
)

− φ∆ρg (5)

whereξ = (ζ − 2η/3) and∆ρ = ρs − ρf . Equations (2–3) form a non-linear evolution equation for porosity

and compaction pressure (and allow non-linear porosity waves), while Eqs. (4–5) solve principally for the

creeping, compressible Stokes flow of the solid. These equations couple through the pressure termsP , and

P ∗ and through constitutive equations. In the limitφ → 0, the equations reduce to incompressible Stokes.

In the limit η → ∞ they reduce to Darcy flow in a rigid medium. Most of the behavior in these equations is

controlled by an intrinsic length scale, the compaction length

δ =

√

K(ζ + 4η/3)

µ
(6)

depends on both permeability and bulk viscosity.

2.1.1 Closure

To close these equations requires constitutive relationships for the permeabilityK, mantle shear and bulk vis-
cositiesη, ζ and functional relationships for the melting rateΓ. Many calculations assume both permeability
and bulk-viscosity are non-linear functions of porosity (i.e. K ∝ φn andζ ∝ 1/φm with n ∼ 2 − −3,
m ∼ 0 − 1).
Melting rate can be closed for simple problems assuming parameterized melting. However, to solve consistent,
reactive open systems require additional conservation equations for energy, composition, phase equilibria
and/or reaction kinetics.

2.2 A more rigorous derivation via Homogenization

The original derivation of McKenzie[1] (and others [3, 4]) was purely macroscopic multi-phase approach,
based on conservation principles and physical intuition. It assumed a microstructure consisting of a low
viscosity melt in a porous deformable network, however, thedetails of that microstructure are not maintained
at larger scales beyond simple volume averaging. Moreover,critical constitutive relationship (K, ζ which are
emergent properties that must depend on that microstructure remained poorly constrained.
Recently, however Gideon Simpson [5, 6], has used homogenization techniques (e.g. [7]) to derive a consis-
tent set of macroscopic equations for the homogenized conservation of momentum for two coupled Stokes
problems at the microscale.

His results1) show that McKenzie’s equations are consistent with two coupled stokes problems at the micro-
scale for specific scaling regimes2) provide a rigorous machinery for computing consistent macroscopic
constitutive relationships for (K andzeta) from the microstructure via Cell Problems.
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Example cell problems for
homogenization (G.Simpson) (a)
Idealized micro structure for a
network of low viscosity melt-
tubules on a viscously deformable
grain. (b,c) 3-D FEM calculations
for pressure and stress in the fluid
and solid phases for the simplest
cubic lattice of cylindrical tubes.
b φ = 3% porosity.c φ = 10%
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ity Homogenization results for effective perme-
ability K and bulk viscosityζ for homoge-
nization of the “tubes on cubes” geometry
above. Results and least-squares fits sug-
gest that, for this geometry,K ∝ φ2 and
ζ ∝ η/φ thus the compaction-length ap-
proaches zero asφ → 0

The intrinsic length-scale in all magma-dynamics problemsis the compaction length, Eq. (6), which depends
on the product of the permeability and the bulk-viscosity. Homogenization gives a general method for cal-
culating both constitutive relations for a common micro-structure. For the simplest geometry shown here the
compaction length scales asδ ∝

√
φ which predicts that the equations become singular in the limit thatφ → 0.

Fundamental mathematical and physical questions remain inthis limit.

3 Basic Behavior of the Magma Dynamics Equations

Coupling Darcy Flow for the fluid and Stokes flow for the solid,gives rise to a much richer range of be-
havior than either sub-problem alone. In general, the introduction of the small lengthscale,δ allows for the
spontaneous formation of small-scale structure that can have important implications for melt transport and
observable geochemistry. Here we illustrate this behaviorwith three specific computations.

3.1 Magmatic Solitary Waves

In the limit of no solid shear deformation or melting, small porosity (φ0 << 1) and the simplifications
K ∝ φn, ζ = ηφ−m, then Equations (2)–(5) can be reduced to a coupled hyperbolic/elliptic system for
pressure and porosity

−∇· φn
∇P + φmP = ∇· φn

k (7)

Dsφ

Dt
= φmP (8)

Which is a degenerate, dispersive, non-linear wave equations for the porosity that have been shown to admit
solitary waves in 1,2 and 3 dimensions (e.g. [8, 9, 10, 11]. More recent analysis of these equations by G.
Simpson [12, 13, 5], demonstrates global existence and well-posedness of solutions for small data for all
parameter values(n, m), global well-posedness of solutions for arbitrary initialdata for a range of parameters
(n, m), and non-linear asymptotic stability of the solitary waves. These equations are singular in the limit
φ → 0 and important open questions remain as to the behavior of this system in this limit (although for global
φ = 0, the overall equations reduce to incompressible Stokes.
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Computation illustrating the collision of two 3-D magmatic
solitary waves for the parametersn = 3, m = 0 showing
phase shift plus radiation on collision [14]. The domain is
32×32×32 compaction lengths with 2 grid-points per com-
paction length, finite volume discretization with light weight
classical Geometric Multi-Grid for the elliptic solve and ex-
plicit time stepping.

3.2 Melt Localization by Reactive Instabilities

Solitary waves exist for fluctuation in melt flux that occur onscales larger than the compaction length. How-
ever, there are other instabilities in this system that occur on scales smaller thanδ and lead to the localization
of porosity into high-permeability channels. One mechanism for flow localization is the reactive infiltration
instability [15, 16, 17] initially hypothesized as a mechanism for producing replacive-dunites observed in
ophiolites.

Reactive Dunites

in Oman 

Solid Residue Porosity

(a) Replacive dunites in Oman.(b,c) Calculations
for reactive flow in compactible media suggests
that fluid-flow up a solubility gradient will spon-
taneously produce high-porosity melt channels sur-
rounded by low-permeability regions [16, 17]. Con-
tinued dissolution can exhaust the soluble phase
leaving a record of melt flow in the residuumb. Sta-
bility analysis suggests that reactive channels will
form wherever the solubility changes rapidly on a
scale comparable to the compaction length. These
channels form at scales smaller thanδ.

3.3 Melt Localization by shear induced instabilities

An alternative instability occurs if the shear viscosityη is a decreasing function of porosity and the system is
undergoing shear. These systems are unstable to localization instabilities [18, 19, 20] that form high-porosity
melt bands on scales<< δ. This effect has been demonstrated experimentally and these experiments provide
important examples against which to validate the theory. Figures A–D, show experiments and calculations
for flow bands in simple shear, showing the ubiquitous low angle of melt bands∼ 20◦ with respect to the
shear plane. The other figure suggest that reoriented melt-bands could produce an anisotropic permeability
that could also focus melt to the ridge axis.
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A comparison of experimental and numerical results. (a) Ex-
ample cross-section of an experiment (PI-1096) from [21] showing
low-angle melt-rich bands at an angleθ to the shear plane.(b,c)The
porosity (b) and perturbation vorticity (c) from a numerical simula-
tion with n = 6 andα = −27 at a shear strainγ = 2.79. (d)
Histograms comparing band-angle distributions in experiments and
the numerical solution from b.

Implications of melt bands for melt transport at ridges. Esti-
mated orientation of melt bands beneath a mid-ocean ridge from a
two-dimensional, steady-state simulation of mantle flow with T and
strain-rate dependent rheology.(a) Viscosity, solid flow field, and
principal axes of the strain-rate tensor.(b) Strain rate, flow field and
melt-band orientation consistent with experiments (and our model
with n ≈ 4 − 6). Both physical and chemical mechanisms for flow
localization should interact and are likely to reinforce each-other, but
their detailed behavior in a mantle like flow is still an open question.

4 Open Problems/Computational Issues

These model problems illustrate some of the wide range of behavior inherent in the governing equations as
demonstrate how small changes in assumptions about coupling or constitutive equations (e.g. constantη vs.
η(φ)), can lead to drastic changes in behavior and the introduction of multiple scales. All of these instabilities
are likely to lead to a localized, dynamic melt transport network, however significant questions remain:

1. What is the interaction between mechanical and chemical localization phenomena?

2. How do the small scale structures interact with and affectthe large scale mantle flow/effective properties
of plate boundaries?

3. How do we incorporate consistent thermodynamic melting?

4. What are the observable consequences of these processes for geophysics and geochemistry?

5. Can we use available data to infer properties and processes at depth?

To answer these questions requires flexible, multi-physicscodes and solvers (plus good theory, and data)
that can rapidly explore a range of couplings, constitutiveequations and additional processes/PDE’s (such as
energy conservation and thermodynamics). Given current codes, this is somewhat difficult as each code, is
tailored to a specific problem and many of the critical computational choices (discretization, mesh, solvers,
iterative strategy) are hard-wired in from the beginning. However, using recent advances in computational
software, we are beginning to develop a new generation of codes that allow us to reuse much of our physical
expertise, but defer many of the critical choices closer to run time.

5 Structure/Solution strategy for multi-physics problems

Equations (2)–(5) are typical of the systems of PDE’s arising in solid earth dynamics, in that each of the
equations (or subsystems of equations) can often be treatedas linear equations if the other variables are
frozen, leading to complicated (but efficient) operator splitting schemes based on careful ordering and lagging
of variables, coupled with fast linear solvers and an overall functional iteration for the system. Infinite Prandtl
number mantle convection provides a simpler example

DT

Dt
= ∇2T (9)

−∇·
[

η∇V + ∇VT
]

+ ∇P = RaT ĝ (10)

∇· V = 0 (11)

which is often solved by splitting an advection-diffusion equation for temperature (with known velocities)
with a linear Stokes solver forced byT .
The problem with these schemes is that for larger systems, ordering, lagging and convergence control becomes
unwieldy. An alternative approach is to discretize the entire system as a non-linear problemF(x) = 0 and
use a suitable non-linear method such as Newton. For large systems, however, the Jacobians are large block
matrices that can be difficult to both compute and solve. Nevertheless, the underlying “near linear” system
of equations is preserved in the block structure and with suitable computational tools can be used to form
efficient “physics based” or “PDE based” preconditioners based on existing or new splitting schemes. For
example, the discrete linearized Jacobian for iso-viscousthermal convection can be written





A ∂V 0
−RaI K(η) G

0 GT 0
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whereA(η, V) is an advection diffusion operator, and Discrete Stokes exists in the lower2×2 diagonal block.
Coupling terms for temperature driven flow are in the(2, 1) block and advection in(1, 2) block. Additional
coupling, for example a temperature dependent viscosityη(T ) would add additional terms to the(2, 1) block
and modifyK. Likewise Equations (2)–(5), has the4 × 4 block structure
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6 Computational Ingredients for Flexible multi-physics solvers

To explore and (efficiently?) solve these large block systems requires two critical software ingredients: 1)
Efficient and flexible methods for assembling the discrete Jacobians 2) Flexible pre-conditioning schemes that
allow arbitrary composition of the sub-blocks to reuse “physics based” recipes. Fortunately, several interop-
erable computational software projects (FEniCS and PETSc), have recently developed sufficient features to
prototype such schemes easily. Here we demonstrate hybrid codes that utilize the following components

• FEniCS Form Compiler (FFC) (www.fenics.org): for automatic code generation of the weak form of
analytic jacobians and residuals.

• Dolfin (www.fenics.org): for assembly of discrete block matrices and for a clean abstract interface for
discrete functions on FEM spaces (used for Semi-Lagrangianschemes on unstructured meshes with
GTS).

• PETSc non-linear solvers (SNES) with FieldSplit preconditioners (www-unix.mcs.anl.gov/petsc/petsc-
2/): that allow arbitrary ordering and composition of sub-block pre-conditioners while preserving global
convergence of the non-linear problem.

7 Example: Block-preconditioners for non-linear magma wave
equations

Solution of 2D non-linear wave equations using
FFC generated Jacobians and PETSc FieldSplit
preconditioners. Calculation includes

• FEM space: Mixed P1-P1 Lagrange for
porosity and pressure

• Mesh:128x128 “UnitSquare Left”

• Domain:64 × 64 compaction lengths

• Parameters: permeabilityn = 2, bulk
viscositym = 1

Full time-dependent calculation shows the insta-
bility of an initial 1-D Gaussian distribution of
porosity into a family of 2-D solitary waves plus
radiation (see the movie).

Choosing a finite element space, we compose the weak form of the Jacobian and residual of Eqs. (7)–(8) as

# choose Finite element space and compose mixed P1P1 element s
P1 = FiniteElement("Lagrange", "triangle", 1)
M = P1 + P1

(v, u) = TestFunctions(M)
(dp, df) = TrialFunctions(M) # deltas for pressure and poros ity
(p, f) = Functions(M) # solution from last iteration

# set constants and auxiliary functions in form
dt = Constant("triangle") # time step
hdt = 0.5 * dt # half time step
hsquared = Constant("triangle") # (h/delta)ˆ2: domain siz e in compaction lengths
gStar = QuadratureFunction("triangle") # Semi-lagrangia n source term
n = FacetNormal("triangle") # facet normal for surface inte grals

# Permeability and its derivative with respect to porosity
def K(f):

return f * f

def dKdf(f):
return 2 * f

# weak form of Jacobian (Bilinear Form)
a1 = (K(f) * dot(grad(v),grad(dp)) + hsquared * f * v* dp) * dx + ((dKdf(f) * dot(grad(v),grad(p))

+ hsquared * v* p - dKdf(f) * v.dx(1)) * df) * dx + dKdf(f) * df * v* n[1] * ds
a2 = -u * hdt * hsquared * f * dp* dx + u * (1 - hdt * hsquared * p) * df * dx
a = a1 + a2

# weak form of non-linear residual Function -F(x): Linear Fo rm
L1 = (K(f) * dot(grad(v),grad(p)) +hsquared * v* f * p - K(f) * v.dx(1)) * dx + v * K(f) * n[1] * ds
L2 = u * (f - hdt * hsquared * (f * p) -gStar) * dx
L = -L1 - L2

Which upon assembly by dolfin produces a2 × 2 block system
[

A(f) B(f, p)
−∆t

2
M M

][

δp
δf

]

= −
[

rp

rf

]

(12)

Which is solved using a fieldsplit preconditioner defined by the PETSc options file

-ksp_type richardson # use Richardson on the full system
-pc_fieldsplit_type multiplicative
#
# set up fieldsplit preconditioner for Pressure (0) AMG on A b lock
#
-fieldsplit_0_ksp_type preonly
-fieldsplit_0_pc_type hypre
-fieldsplit_0_ksp_monitor
#
# set up fieldsplit preconditioner for Porosity(1) SOR on po rosity Mass-Matrix
#
-fieldsplit_1_ksp_type preonly
-fieldsplit_1_pc_type sor
-fieldsplit_1_ksp_monitor

Other composite solver schemes are easily implemented by changing the options at run time. This algorithm
gives quadratic convergence with performance comparable to AMG preconditioned GMRES for the entire
2x2 system (even with the memory overhead of computing sub-matrices). Initial results suggest the algorithm
is optimal with grid size.

7.1 A ToDo list

• Parallel Assembly (coming in Dolfin, Sieve)

• Parallel Semi-Lagrangian methods (mesh partitioned GTS)

• Larger systems: Rayleigh-Benard Convection, Full Magma

• Improve interface for the educated geo-user (CIG)

• Integrate with other CIG Mantle/Convection/ Lithosphericdeformation projects for plate boundary
modeling


