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1. Abstract

WE PRESENT A NEW APPROACH to modeling dynamic ruptures
on nonplanar faults. A fundamental challenge for modeling

rupture dynamics on complicated fault networks using current tech-
niques is dealing with the computational mesh. Generation of a
mesh that is both faithful to the underlying fault structure and suit-
able for efficient computation is an open problem. Here, we test the
possibility of using an extended finite element method, XFEM3, for
problems of repeated rupture.

This method is mesh-free – the fault need not lie on mesh edges
– drastically reducing the requirements for suitable computational
meshes. The XFEM handles spatial discretization, so suitable tem-
poral discretizations are added. Friction and failure on the fault is
characterized by a mixed boundary condition; some regions are
sticking via a Dirichlet boundary condition, where others are slip-
ping via a Neumann traction boundary condtion. We derive and
present weak conditions for sticking and slipping under the XFEM,
and present a solution strategy for alternating quasistatic loading
and dynamic rupture. To demonstrate the feasibility of this approach,
we present results for long time-series of ruptures on complicated,
two-dimensional fault networks.

Using this strategy, sequences of dynamic ruptures on networks of
faults, including branching, are generated. Distributions of event
rupture length, magnitude, epicenter location, and other statistical
measures are presented and compared as a function of geometry.
While the problems and geometries we solve are feasible with exist-
ing methods, this demonstration indicates that XFEM should prove
useful for the solution of problems limited by mesh generation, es-
pecially three-dimensional, fault system-level problems.

2. Dynamic Repeated Rupture

We solve elastodynamic rupture in both Mode III and mixed Mode
I/II loading under plain stress assumptions in two dimensions.

ρ
∂2u

∂t2
= ∇ · E (x)∇u + f (x)

The system is loaded via a background basal loading, ν, at depth
H on the fault. ν is determined similarly to the ideas of Cooke and
Marshall2 of applying zero friction on the fault and a far-field loading.

2.1 Quasistatic Loading

. First term is ignored as acceleration is negligible.

. Entire fault is stuck, i.e. |[∂u∂t ]| = 0

. Boundary conditions in the far-field given by constant rate, Vt

. Failure is given by a vector-valued failure criteria. Given solution
u to the above, calculate Tf , the tractions of friction required to
keep the fault stuck.

. Determine the minimum time such that Tf at this new time will
equal the interface strength, Φ. This indicates rupture initiation.

2.2 Dynamic Rupture

. Friction is specified by a weakening interface strength where slip-
ping.

. As a region ruptures, it loads neighboring regions, which must be
checked for failure.

. A region becomes stuck when |[∂u∂t ]| → 0.

During rupture, a region’s friction is determined by whether it is stick-
ing or slipping:

|[∂u∂t ]| = 0 where stuck
T = −φ
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)
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where νt is the loading term calculated above, and φ is given by a
friction that weakens with slip:
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Equations are closed by radiating boundary conditions on the exte-
rior.

Solve until everything is stuck, then repeat.

3. the XFEM

4. Weak Formulation for Slip Weakening

MESH-FREE METHODS such as the partition of unity FEM
(PUFEM4) provide a mechanism to discretize faults without

placing the fault on mesh edges. For complicated geometries, es-
pecially in three dimensions, forming a mesh that conforms to all
faults is an open problem. Therefore, mesh-free methods present
definite potential for rupture on complex fault systems, especially
in three dimensions.

For example, compare a standard FEM mesh and a typical XFEM
mesh.

In the standard FEM, elements must be chosen to conform to the
boundaries. In mesh-free methods, we can start from most any
mesh, including regular meshes. On this regular mesh, we form
basis functions by extending standard finite element spaces with
appropriate functions via the eXtended Finite Element Method
(XFEM3).

. Basis functions are built from standard finite elements
and extensions.

. Extensions are chosen to respect the faults, including
heaviside functions, tip functions, and branch functions.

. Instead of defining split nodes or other element based
discontinuities, extensions trace the fault through the el-
ement interior.

The FEM space is then given by:

P ≡
∑
i

P iψi =

{∑
i

viψi | vi ∈ P i
}
⊂ H1 on Ω− ΓC

where vi form a partition of unity (standard basis function) on el-
ement i and ψi are extension functions that match the geometry
across that element.

Sample basis function and corresponding extension
function for cracks and tips

In the definition of the XFEM, it is important to remember that
no concept may be considered strongly (point-wise) on the fault,
making split nodes impossible. In the strong form, stickslip friction
enforces different types of boundary conditions on different points
of the fault. This is not possible weakly. Instead:

. Each vector-valued degree of freedom ψi is considered stuck
or unstuck.

. Each fault section, ΓC ∩ ΩE, is considered unstuck if any ψi
whose support contains that section is unstuck. It is stuck only
if all such ψi are stuck.

Using these concepts, weak conditions for event rupture and ter-
mination are derived.

4.1 Initiation of Slip

. Given a solution u under stuck conditions, determine the (weak)
tractions T required to keep degree of freedom ψi stuck:

Tf ≡
∫

ΓC

ψiTf = Mutt + Ku−
∫

ΓC

ψi(T − Tf) (1)

. At every point on the fault, we have a failure criteria that is a
function of direction. Integrate this to find a weak failure criteria
(that is still a function of direction):

Fi(θ, t) ≡
∫

ΓC

ψiφ (θ, t)

. We now have a weak required frictional traction and a weak fail-
ure criteria. Compare these to determine if the basis function
ψi should become unstuck; ψi becomes unstuck when:

|Ti| > Fi
(
T̂i, t

)
Update state variables on the portion of the crack contained in
the support of ψi.

4.2 Termination of Slip

. Individual degrees of freedom do not become stuck.

. Instead, fault section E becomes stuck to prevent backslip:∫
ΓC∩ΩE

∂S

∂t
< 0

. When the section becomes stuck, all ψi whose support con-
tains ΩE become stuck, and the Dirichlet boundary condition is
enforced.

∂u
∂t , dots indicate

Step unstuck degrees σ · n̂
of freedom

5. Method Validation and Verification

6. Sample Mode I and II Results

7. Conclusions and Future Work
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TO VERIFY OUR USE of the XFEM, we compare results to pre-
viously published solutions generated using finite differences

on a single, infinitely long planar geometry.

Finite difference solutions XFEM solutions

Due to the highly chaotic nature of the dynamic system, we do not
expect exact simulation replication, but instead compare statistics
of event lengths.

Finite difference solutions XFEM solutions

WE ALSO CONSIDER problems under Mode II strikeslip load-
ing, with a pseudo-third dimension. Interpenetration is con-

sidered normal/thrust faulting, and (in this simplified approach) is
treated without consideration of normal stresses.

Clockwise from right: the tested geometry; slip on each fault sec-
tion; moment vs. length of events; and distributions of lengths of
events as a function of alpha, the weakening parameter in friction.

. XFEM allows complicated fault geometries to be easily handled
in a finite element method for simulation. Without the difficulty
of meshing, it allows fault dynamics to be studied as a function
of varying geometry.

. With derived stick-slip weak conditions, populations of repeated
ruptures on these fault network are generated.

. On planar geometries, this method is consistent with previous
finite difference simulation.

. On nonplanar geometries, a pseudo-3D approach will allow
for continued study of friction mechanics in repeated rupture.
More realistic, normal-stress dependent frictions must be intro-
duced.

. This method promises an approach for problems in 3D that
cannot currently be studied for realistic geometries. Future
work will leverage this ability in problems of varying or unde-
termined geometry.


