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Adaptive mantle convection simulation on supercomputers
Our goal is to conduct global mantle convection simulations that can resolve faulted plate
boundaries, down to 1 km scales. Uniform resolution leads to trillion element meshes,
which are intractable even on petascale supercomputers. Thus parallel mesh adaptivity
is essential.
We present Rhea, a new generation mantle convection code designed to scale to hun-
dreds of thousands of cores. Rhea is built on ALPS, a parallel octree-based adaptive
finite element library that supports new distributed data structures and parallel algorithms
for dynamic coarsening, refinement, rebalancing, and repartitioning of the mesh.

1. Mantle convection
Model equations
The dynamics of mantle convection are governed by
equations for the conservation of mass, momentum, and
energy. A simplified version reads:

∂T

∂t
+ u · ∇T −∇2T − γ = 0 (AD)

∇ ·
[
η(T )

(
∇u +∇>u

)]
−∇p + Ra Ter = 0 (S1)

∇ · u = 0 (S2)

• T . . . temperature
• u. . . velocity
• p . . . pressure
•Ra∼ 106 − 109. . . Rayleigh

number
• γ. . . heat production rate
• η(T ) ∼= ηo exp(−EoT )

. . . viscosity
• er. . . radial direction

The need for mesh adaptation
Resolving phenomena at faulted plate boundaries requires ∼ 1km resolution. On a uniform
mesh of the Earth, this results in ∼ 1012 elements, well beyond the reach of even petascale
supercomputers. Adaptive mesh refinement places resolution only where needed, resulting
in 3 orders of magnitude reduction in number of elements. Below, we show snapshots of
the thermal field T at three time instants (left) and corresponding adapted meshes (right).
The mesh adaption, which is based on error indicators, resolves the rising plumes and the
instabilities at the top layer.

Operator-split time integration
The coupled system (AD), (S1), (S2) is split into an advection-diffusion time step, followed
by a variable-viscosity Stokes solve to update the flow field. The mesh is adaptively refined,
coarsened and redistributed every ko timesteps.

T 0 =T (t0)
k := 0

given T := T k

solve (S1), (S2)
uk, pk

perform time
step for (AD)
with u = uk

T k+1

if mod(k, k0) = 0 ⇒ adapt mesh;
set k := k + 1, tk+1 := tk + δt

2. Parallel adaptive mesh refinement/coarsening (AMRC)
Parallel octree-based adaptive meshes
Octree-based adaptive finite element meshes are used to discretize the mantle convection
equations. The mesh structure is dynamically partitioned to processors after each AMRC
step according to a space filling curve (SFC). The locality-preserving property of SFCs
leads to good parallel partitioning and good cache performance.

On the right we show the Z-ordered space
filling curve leading to a one-to-one corre-
spondence of octree leaves and finite el-
ements and to a partitioning of the mesh
among three processors.

Proc 0 Proc 1 Proc 2

Above we show a partitioning of a spherical shell on 1024 cores for two time steps using the
forest-of-octree library P4EST (left) and the corresponding adapted meshes and tempera-
tures (right). Time evolution uses the high-order discontinuous Galerkin library MANGLL.

Parallel scalability of ALPS

Parallel scalability for adaptive solve of
the advection-diffusion equation (no Stokes
solve). Fixed-size scalability (right): Speedups
based on total runtime plotted against the
number of cores for four different problems.
Weak scalability (below): On the left is a
breakdown of total run time into components
related to numerical PDE integration (blue)
and AMRC functions (all other colors), with in-
creasing number of cores from 1 to 62,464.
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Problem size increases isogranularly at roughly 131,000 elements per core (largest prob-
lem has approximately 7.9 billion elements). Overall, AMRC consumes about 10% or less
of the run time. On the right is the parallel efficiency measured in total processed elements
per core per total run time. Despite a 62K-fold increase in problem size and number of
cores, parallel efficiency remains above 50%.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 62464

P
er

ce
n
ta

g
e

o
f
to

ta
l
ru

n
ti
m

e

Number of cores

NewTree

CoarsenTree

RefineTree

BalanceTree

PartitionTree

ExtractMesh

InterpolateF’s

TransferFields

MarkElements

TimeIntegration

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 62464

P
a
ra

ll
e
l
e
ffi

c
ie

n
c
y

Number of cores

Relative time steps per total run time

3. Scalable variable viscosity Stokes solver
The Stokes equations (S1–S2) are discretized by trilinear hexahedra for both velocity and
pressure. Stabilization is provided by polynomial pressure projection. To address the het-
erogeneities stemming from variable viscosity and mesh size, we employ a preconditioned
MINRES solver. The preconditioner is one algebraic multigrid (AMG) V-cycle on an approx-
imately factored form of the Stokes system, with an FP -type approximation of the pressure
Schur complement. The AMG solver is BoomerAMG from the LLNL hypre package.

#cores #elem #elem/core #dof MINRES
#iterations

1 67.2K 67.2K 271K 57
8 514K 64.2K 2.06M 47
64 4.20M 65.7K 16.8M 51
512 33.2M 64.9K 133M 60
4096 267M 65.3K 1.07B 67
8192 539M 65.9K 2.17B 68

The table demonstrates that the
number of MINRES iterations
and the cpu time for the Stokes
solve is almost insensitive to
a 8192× increase in problem
size, O(103) variation in viscos-
ity, and 4 levels of non-uniform
mesh refinement.

4. Adaptive mantle convection simulation

Parallel scalability
We present end-to-end simula-
tions that resolve the range of
length/time scales that we expect
to be present in global models of
mantle convection. Overall weak
scalability shows that the time is
dominated by the Stokes solve.
The overhead due to mesh adap-
tation is negligible. The overall ef-
ficiency on 16,384 cores is about
25% compared to 1 core.
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A yielding problem
Next we adopt a viscosity law that displays yielding under high stress. This simplified ap-
proach dynamically achieves large-scale motions with narrow zones of low viscosity such
as those associated with plate tectonics and faulted plate boundaries. The model uses
a temperature- and pressure-dependent viscosity that yields under high deviatoric stress
according to

η =


min

{
10 exp(−6.9T ),

σy

2ė

}
, z > 0.9

0.8 exp(−6.9T ), 0.9 ≥ z > 0.77

50 exp(−6.9T ), z ≤ 0.77

where σy is the yield stress and ė is the second invariant of the deviatoric strain rate tensor.
Here, the viscosities range over four orders of magnitude.

Mantle convection with yielding. Top: Temperature isosurfaces at T = 0.3 (cyan), T = 0.8
(orange). Bottom left: Horizontal slice of temperature showing that grid refinement fol-
lows the temperature gradient. Bottom center: Vertical slice of temperature showing
the downwelling slab and the yielding zone. Bottom right: A zoom-in of the yielding
zone, where the finest grid of ∼ 1.5 km resolution covers the region of highest stress.
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