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Objectives
Create flexible, computationally efficient software for simulation of crustal
deformation across spatial scales ranging from meters to hundreds of kilometers
and temporal scales ranging from milliseconds to hundreds of years.

• Modular: Users can swap modules to run the problem of interest

• Scalable: Code runs on one to a thousand processors efficiently

• Extensible: Expert users can add functionality to solve their problem without
polluting main code

Motivation
• Most available modeling codes

◦ rarely solve the problem you want to solve

◦ are often poorly documented

◦ may not work correctly

• Current research demands larger, more complex simulations

• Want to avoid multiple, incompatible versions of the same code

Overview
PyLith 1.x combines the quasi-static modeling functionality of PyLith 0.8 and its
predecessors (LithoMop and Tecton) and the dynamic modeling functionality of EqSim.

General features
• 1-D, 2-D, and 3-D problems

• Quasi-static and dynamic time-stepping

• Support for several cell (element) types

• Easy specification of boundary conditions using spatial databases

• Fault implementation creates dislocations in mesh

• Seamless importing of meshes from CUBIT and LaGriT mesh generators

• Seamless use of SCEC CVM-H and USGS Bay Area seismic velocity models for
elastic material properties

• Writes output using VTK files for seamless import into ParaView and MayaVi
visualization tools

Target applications
• Pre- and post-seismic deformation with viscoelastic rheologies

• Ground motion simulations with kinematic or spontaneous ruptures

• Calculation of 3-D Green’s functions
• Simulations of multiple earthquake cyclesCurrent Release: 1.3.0 (Aug 30, 2008)

PyLith 1.3 uses 20-30% less memory and is 25-30% faster than PyLith 1.1.

Features
• Cell types include triangles, quadrilaterals, hexahedra, and tetrahedra

• Kinematic fault interfaces using cohesive cells

• Multiple, potentially overlapping earthquake ruptures and aseismic creep

• Dirichlet (displacement and velocity) boundary conditions

• Neumann (traction) boundary conditions

• Absorbing boundary conditions

• Gravitational body forces

• Linear elastic, linear and generalized Maxwell viscoelastic materials

• Quasi-static and dynamic time-stepping

• Automatic or user-controlled time-stepping for quasi-static simulations

• Output of displacements, fault information, and state variables

Planned releases
• Release 1.4 (Dec 2008)

Add support for spontaneous earthquake rupture and nonlinear material bulk
rheologies.

◦ Fault friction interface conditions
◦ Include several popular fault constitutive models

◦ Add a few popular nonlinear bulk rheologies

• Release 1.5 (Jun 2009)
Add support for large deformations and more complex time dependent
boundary conditions.

• Release 1.6
Add support for automatic calculation of 4-D Green’s functions.

• Release 1.7
Support simulations coupling quasi-static and dynamic behavior.

Software Architecture
• Separate code into modules to encapsulate behavior and facilitate

reuse
• Top-level code written in Python

◦ Expressive, high-level, object-oriented language

◦ Dynamic typing allows adding/replacing modules at runtime

◦ Convenient scripting

• Low-level code written in C++
◦ Compiled (fast execution), object-oriented language

• Bindings to glue Python & C++ together

◦ Pyrex/pyrexembed generate C code for calling C++ from Python

Leverage packages developed by computational scientists

PyLithPyLith

PyLithPETSc

PyLithPyre PyLithSieve PyLithProj.4 PyLithFIAT

PyLithnumpy

PyLithMPI BLAS/LAPACK PyLithboost

Major external packages
• Pyre is a science neutral simulation framework developed at Caltech.

• Sieve is a suite of general, parallel data structures for storing and
manipulating finite-element meshes.

• PETSc is the Portable, Extensible Toolkit for Scientific Computation
from the Argonne National Laboratory. It is used to perform operations
on matrices and vectors in parallel.

• Proj.4 is a library for converting between geographic projections.

• FIAT generates arbitrary order instances of Lagrange elements on
lines, triangles, and tetrahedra.

Role of the CIG
The CIG is an NSF funded membership-governed
organization that supports Earth science by developing
and maintaining software for computational geophysics.

• PyLith is a fully-supported CIG code. CIG provides
the source repository, web site for distribution, mailing
lists, bug tracking system, and testing and benchmarking
infrastructure.

• CIG provides developer time (Matt Knepley and Leif Strand)
and help in writing the documentation (Sue Kientz)

• Development targets the needs of the CIG working groups,
especially the Short-Term Crustal Dynamics group.

CIG long-term goals
• Develop reusable, well-documented, open-source

geodynamics software

• Infrastructure to allow quick assembly of state-of-the-art
modeling codes

• Extend existing software frameworks to interlink multiple
codes and data

• Form strategic partnerships with the larger world of
computational science

• Provide specialized training and workshops for both the
geodynamics community
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Availability
PyLith is open-source and aims to be a community
code. It is distributed by CIG at geodynamics.org.

• Source code
◦ SVN repository (development version)

◦ Tarball (releases)

• Binary packages

◦ Linux (32-bit)

◦ OSX (Intel and PowerPC)

◦ Windows (uses cygwin)

• User manual with tutorials

Inputs to PyLith
• Simulation parameters

• Finite-element mesh
◦ Mesh exported from LaGriT

◦ Mesh exported from CUBIT

◦ Mesh constructed by hand (PyLith mesh ASCII format)

• Spatial databases for physical properties, boundary
conditions, and rupture parameters

◦ SCEC CVM-H, USGS Bay Area Velocity model, or
simple ASCII files

◦ Independent of discretization scheme and size

Fault Implementation
We modify the topology of the finite-element mesh, inserting cohesive
cells on the fault surface.
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Exploded view of meshes

• System of equations without cohesive cells

A~u =
~b

• Use cohesive cells with Lagrange multipliers and conditioning to
constrain slip
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• Advantages

◦ Fault implementation is local to cohesive cell

◦ Solution includes forces generating slip (Lagrange multipliers)

◦ Retains block structure of matrix (same number of DOF per vertex)

◦ Offsets in mesh mimic slip on natural faults

• Disadvantages

◦ Conditioned matrix is asymmetric

◦ Mixes displacements and forces in solution

Unit and Regression Testing
Automatically run more than 875 tests on multiple platforms whenever code is
checked into the source repository.

• Create tests for nearly every function in code during development

◦ Remove most bugs during initial implementation

◦ Isolate and expose bugs at origin

• Create new tests to expose reported bugs

◦ Prevent bugs from reoccurring

• Rerun tests whenever code is changed

◦ Code continually improves (permits optimization with quality control)

• Binary packages generated automatically upon successful completion of tests

Example: SCEC Strike-Slip Benchmark
One of the benchmarks in the SCEC Crustal Deformation Modeling benchmark suite.

Description
• Viscoelastic (Maxwell) relaxation from a strike-slip

earthquake in 3-D without gravity.

• Elastic layer over a viscoelastic layer.

• Fault extends into viscoelastic layer.

• Slip is 1.0 m and tapers linearly over 4 km along
buried edges of the fault.

• Displacements on boundaries set to semi-analytic
elastic solution.

• Results shown are for elastic solution only.

Elastic Solution

Summary
• Cell types: Linear basis functions for hexahedron

(Hex8) and tetrahedron (Tet4)

• Discretization sizes: 1000 m, 500 m, 250 m

• For linear basis functions, Hex8 cells outperform Tet4
cells.

• We can improve performance by switching from
Krylov solver to multigrid solver.
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Comparison of Local Error

• Error is small and decreases with finer resolution. Solution is converging!

• Greatest error occurs where slip gradient is discontinuous and linear basis functions cannot match slip
variation.
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