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The fault-parallel displacement for a vertical rectangular dislocation of finite -3 -2 distance along Palos Verdes (km)

width and infinite length is given by

u, = Y arctan(yj — arctan(yj
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This agrees with existing solutions for a fault of finite
height [e.g. Savage, 1980; 1990]. This solution only dif-
fers from (1) in that an additional term, —arctan (y/d), is
present to account for the finite height of the fault.
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ABOVE - Map showing active fault traces and GPS stations of the ABOVE - Faults-are color shaded by depth : red = surface xan skm locking ae ) , The close correlation of three-dimens interseismic model predictions of surface velocity with geodetic data and the match of geologic model predictions of fault slip rates with
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