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We introduce a methodology for simulating interseismic deformation along multiple interacting 
non-parallel faults. We show that the analytical solution for surface displacement associated 
with slip on a semi-infinite vertical strike-slip fault is identical to that of a vertical fault of finite 
vertical width that joins at depth with two horizontal dislocations with opposite senses of dis-
placement. Based on this analytical solution, we formulate a two-step approach for the numeri-
cal investigation of geologic and interseismic deformation that allows three-dimensional fault 
surfaces to interact and accumulate mechanically and kinematically viable slip distributions. We 
apply this approach to the complex network of faults in the Los Angeles region and find that the 
geologic model results match well geologic slip rate data and the interseismic model results 
match well the heterogeneous GPS velocity pa�ern in the Los Angeles region. Heterogeneous 
interseismic deformation produced by our three-dimensional model implies that two-
dimensional analyses of the Los Angeles region cannot sufficiently simulate neotectonic defor-
mation. The ability of these models to reproduce well both geologic slip rates as well as inter-
seismic geodetic velocities suggests that current-day contraction rates in the greater Los Angeles 
region are compatible with long term geologic deformation rates and disputes suggestions of 
temporally variable fault slip rates inferred from existing two-dimensional investigations.

ABSTRACT

ANALYTICAL INTERSEISMIC MODELS
In order to derive an analytical model that is be�er suited for finite intersecting faults, we use the solu-
tions of Okada [1985] for finite rectangular dislocations to set up an earthquake cycle model equivalent 
to the conventional model. The net, fault-parallel displacement field for any number of elementary dis-
locations can be found by finding the sum of the contributions from each elementary dislocation.

where Ux is the fault-parallel displacement, U is the displace-
ment on the fault, y is the distance from the fault trace, and D 
is the locking depth. 

For a single vertical fault of infinite length and width located along 
the x-axis (a�er simplification), the solution approaches the con-
ventional solution,

CONVENTIONAL INTERSEISMIC MODEL
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EQUIVALENT EQ CYCLE MODEL
The fault-parallel displacement for a vertical rectangular dislocation of finite 
width and infinite length is given by 

This agrees with existing solutions for a fault of finite 
height [e.g. Savage, 1980; 1990]. This solution only dif-
fers from (1) in that an additional term, –arctan (y/d), is 
present to account for the finite height of the fault. 
Therefore, to simulate an infinitely tall fault (i.e. W = ∞) 
this additional term must be effectively removed.

For a horizontal dislocation (δ = 0) with a uniform 
strike-slip displacement, the fault-parallel dis-
placement at the free surface is given by

For a horizontal dislocation (δ = 180) the fault-
parallel displacement at the free surface is given by
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Adding the displacement contributions from each of 
the three dislocations, we arrive at the conventional 
interseimic solution. Note that this solution is inde-

pendent of depth to the horizontal detachments.
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NUMERICAL IMPLEMENTATION
1) GEOLOGIC DEFORMATION

0 km

2) INTERSEISMIC DEFORMATION

Stress-Free Horizontal Crack

0 km

Locking
Depth

GPS Stite
Velocities

Fault Surface

Locked

Fault T
ra

ce

27.5 kmFreely-Slipping
Fault Surface

Applied Motion

Model-Calculated
Motion

STEP #1 -  In the first 
step, a geologic time 
scale model is created 
by allowing the en-
tirety of fault surfaces 
to freely slip in re-
sponse to displace-
ments applied at the 
base of the horizontal 
detachment. 

STEP #2 - In the second 
step, slip from below 
the locking depth is ap-
plied to simulate inter-
seismic deformation 
(similar to backslip ap-
proach). Surface veloci-
ties can then be calcu-
lated at the locations of 
GPS sites and compared 
to existing GPS data.

LEFT - Theoretical and BEM 
model generated fault parallel 
interseismic displacements. The 
decoupled BEM model repro-
duces well the conventional dis-
placement profile. Discrepancies 
between theory and model pre-
dictions reflect discretization 
errors.

APPLICATION: FAULTS OF THE LA BASIN
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ABOVE - Map showing active fault traces and GPS stations of the 
greater Los Angeles region. The upper traces of blind faults are 
indicated by black dashed lines. GPS stations (site names in capi-
tal le�ers) are indicated by triangles.

ABOVE - Faults are color shaded by depth : red = surface 
and dark blue = 27.5 km.  This model is based on the SCEC 
CFM version 2.5. Coordinates are given in UTM (km).
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GEOLOGIC MODEL SLIP RATES
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ABOVE - Model-predicted average slip rates (circles) and geologic slip rate estimates (grey ranges). Gradient 
shading on geologic ranges indicate that the upper limit is poorly constrained. To calculate the average slip rate of 
modeled fault surface containing many elements of varying size, we integrate the slip over each element’s area 
and calculate a weighted average slip rate for each surface. References for the upper and lower geologic slip rate 
ranges are shown by gray italic numbers and are as follows: 1) Morton and Ma�i [1987] 2) Oskin et al. [2000] 3) 
Dolan et al. [1997] 4) Hu�ile and Yeats [1996] 5) Bryant [1987] 6) McNeilan et al. [1996] 7) Shaw et al. [2002] 8) 
Grant et al. [1999] 9) Dolan and Pra� [1997]; Dolan et al. [2000] 10) Tsutsumi et al. [2001] 11) Tucker and Dolan 
[2001] 12) Rubin et al. [1998] 13) Crook et al. [1987] 14) Walls and Gath [2001] 15) Yeats [2002] 16) Dolan et al. 
[1997] 17) Freeman et al. [1992]; Grant et al. [1997] 18) Lindvall and Rockwell [1995] 19) Stephenson et al. [1995] 
20) Marin et al. [2000] 21) Kahle [1986] 22) Yeats et al. [1994] 23) Gath et al. [1992].

LEFT: West side up slip rate 
along the vertical Palos 
Verdes fault. (From Cooke 
and Marshall 2006) The grey 
box shows the locations and 
slip rates determined from 
analysis of upli�ed marine 
terraces along the Palos 
Verdes peninsula [Bryant, 
1987; Ponti and Lajoie, 1992]. 
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Model results match well both geologic slip rate estimates and interseismic GPS velocities in the region, suggesting that the models capture the first-order features of geologic and 
interseismic deformation in the region. Most regions where the interseismic model produces relatively high residuals occur where GPS stations likely have mischaracterized anthro-
pogenic and seasonal motions, suggesting that corrected GPS velocities may be�er elucidate the current-day tectonic deformation pa�ern in the Los Angeles region. 
The close correlation of three-dimensional interseismic model predictions of surface velocity with geodetic data and the match of geologic model predictions of fault slip rates with 
geologic data suggest li�le discrepancy between geodetic and geologic deformation rates in the metropolitan Los Angeles region. In contrast to results from two-dimensional 
models of the region that evoke geologically-discrepant slip rates of 9 mm/yr on the Puente Hills fault [Argus et al., 2005], we find that steep geodetic gradients in the San Gabriel 
basin are matched well by a three-dimensional model with relatively fast slip on the Sierra Madre fault and relatively slow slip on the Puente Hills thrusts, in agreement with geo-
logic slip rate estimates. Furthermore, although the models here employ homogeneous and isotropic material properties, the complex fault structure produces a heterogeneous pat-
tern of deformation throughout the Los Angeles region, suggesting that two-dimensional analyses of the region may have limited suitability.

CONCLUSIONS
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INTERSEISMIC MODELS
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ABOVE:  Average weighted residual RMS errors for interseis-
mic models of the Los Angeles region utilizing various locking 
depths. Although an 8 km locking depth minimizes the 
weighted RMS error, locking depths of 5-13 km do not provide 
significantly worse overall match to GPS velocities. 

LEFT:  N9°E Transects through 
the Los Angeles region show-
ing model and GPS velocities. 
Locations of transects are 
shown on the figures above. A 
cross-sectional slice through 
the three-dimensional model 
along each transect is shown 
above each plot with faults 
shown with black lines (dashed 
where locked). Sedimentary 
basins are shaded gray. In the 
plots, the N9°E component of 
GPS velocities and station loca-
tion are projected onto tran-
sects (triangles). GPS stations 
discussed in the text that po-
tentially have mischaracterized 
anthropogenic motion are 
shown with gray triangles. 
Model results are shown with 
black curves. Localized conver-
gence is strongest in the east-
ern transects (C and D) in both 
the model and GPS data.

LOCKING DEPTH SENSITIVITY

INTERSEISMIC GPS AND MODEL VELOCITIES
BELOW LEFT:  GPS veloci-
ties from Argus et al. 2005 
and model-predicted sur-
face velocities. Model ve-
locities are shown for a 
locking depth of 8 km.

BELOW RIGHT:  GPS-
model residual velocities. 
The four areas of greatest 
residuals correspond to lo-
cations with large non-
tectonic ground motions.
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