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In this study, we aim to understand the physical rationale behind the success of the backslip 'HMHTJ ; Slip along the axial hinge(s) (thin gray curves) EXACTLY compensate(s) for the effects of bending Even if bending stresses are released episodically in the shallow portions of the subduction zone, discriminating between Given_thaF Fhe ESPM reduces to the B_SM In all but one case, In this sgct_ion, We try to build
model for interpreting subduction zone geodetic data (Savage, 1983) by studying a kinematically Vi & ) (thin black curves) - provided both processes operate over the same time period - leading to zero net the ESPM and the BSM would be limited by the location of the closest geodetic observations from the trench, Xees. some intuitiion regarding the application of the latter model in geodetic inversions.
more consistent model for subduction. Specifically, we want to know under what conditions the i s % deformation (thick black lines) in the frontal wedge of the over-riding plate.
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are released aseismically during each seismic cycle in the shallow portion of the subducion zone, or at large depths (> 100km), then no permanent bending deforma- nart (b), that fits both horizontal and vertical synthetic data (bottom row of part (b)). s_onable only if we are interested in predic- orovide a kinematic proxy for the integrated
BSM, Savage 1963 ESPM tion accrues in the frontal wedge - the deformation field due to the hinge(s) EXACTLY cancels that due to bending - and we recover the BSM from the ESPM having | | | | tions beyond 3Dreck from the trench. So, for | tects of such anelastic processses. The plau-
Locked Portion of Glide Plane ANY plate thickness. However, if these bending stresses are even partly released episodically in the shallow portion of the subduction zone, the ESPM predicted field As seen In Box 3 below, the ESPM predicts larger surtace displacements closer to the trench than the BSM. Therefore, the BSM tends to underesti- geodetic inversion of interseismic data sible length for such a zone could be estimated
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Comparison of the derivation of the BSM and the ESPM. The ESPM models a subducting trench. Persistence of only a fraction of this permanent deformation in the frontal wedge can potentially explain coastal uplifts (e.g. S. Chile) or stability of islands in GPS ypically p part (b) Imp should use the same fault interface as that lated to have a transition zone.

subducting, the BSM will estimate a wider locked zone to account for the larger displacements for X > Xaps.

the forearc (e.g., Sumatra) - as can be inferred from the uplift velocities due to bending in the above plots (middle panels). which experiences coseismic rupture.
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