
Data Assimilation:  

One Perspective, Some Examples 
Gary Egbert, Oregon State University 

•   Some basics, examples (from oceanography) 

•   A geodynamic example: short term tectonics 

Bottom line: going forward CIG should consider 
development of capabilities for data assimilation (and 
inversion or “imaging”) … if we plan ahead it will be a lot 
easier 



Over-determined problem (more constraints than 
unknowns) 

Choose u to compromise between, data & dynamics 

Numerous applications, approaches to implementation 



True solution: 

NL solution forced by 
the estimated forcing  

Vorticity 

Example 
Assimilation of surface elevation, velocity 
in a shallow-water model of alongshore 
currents in the surf zone, turbulent regime 
(synthetic data; Kurapov et al., 2007) 

One perspective on DA: 
   keep a dynamical model 
“on track”   

… weather forecasting 



Kalman Filter: a sequential method 
Time dependent 
dynamics: 

White noise 

Forecast error covariance: 
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Optimal correction to forecast:  

In general, K is time dependent … and impractical to 
calculate for even modest size state space 



Sequential data assimilation in practice: 
  Reduced state space Kalman filter: try to describe 
essential dynamics in a very reduced state space 

  Ensemble Kalman filter: approximate time 
evolution of the forecast error covariance with an 
ensemble of assimillation experiments 

  Assume K is constant in time, estimate somehow 
using some sort of ensemble calculation  

  Take a wild guess at K … something simple and 
not too hard to work with 



A different perspective: 
bring data and dynamical 
model into a common 
framework to  
 optimally interpolate observations, 
incorporating dynamics/physical 
constraints 

  estimate inputs (forcing, initial/
boundary conditions) 

 Discover “missing model physics”; 
test hypotheses 

( estimate model parameters) 

•   True solution: 
unsteady, 
irregular flow in 
response to 
steady forcing 

•   DA: corrects 
initial conditions 
and forcing  

SWE Example: 

More sensible for 
(most) geodynamic 

applications? 
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Data 

Dynamical 
equations  

Variational Data Assimilation 
Estimate state (e.g., deformation) combining : 

Error covariances encode a priori beliefs about 
magnitude, spatial/temporal correlation structure of 

errors in forcing, boundary and initial conditions, data 

Minimize penalty functional 

Allow for errors in 
dynamical equations 

(forcing, boundary and 
initial conditions, missing 

physics) and data 



Inverse Ocean Modeling (IOM) : 
an NSF ITR project focused on 
ocean applications (A. Bennett) 

make complex data assimilation 
algorithms accessible to a wider 
audience of modelers 

Application of variational data assimilation to a 
geodynamic problem 

GeoFEST: finite element visco-
elastic modeling code (G. 
Lyzenga et al.) 

Developed as a client 
application of the IOM 



Euler-Lagrange Equations  
(necessary conditions for a minimum      ) 

Backward: 

Forward: 

(Non-linear) coupled system for state variable u 
and adjoint variable  

is the tangent linear at the solution u 

is the adjoint of the tangent linear 

Euler-Lagrange Equations  
(necessary conditions for a minimum      ) 

IOM solves linearized E-L equations, iterating 
to allow for non-linearity 



Direct Representer Approach (Linear) 

representer matrix 

Solve adjoint, forward problem for each observation 

Can show: 

prior 

representers: 

Coefficients b  satisfy: 

obtained by solving  

IOM uses an “indirect representer” algorithm: 
solve for  b  using conjugate gradients, without 

forming the matrix R 



GeoFEST Forward Model Equations 
Stiffness 

matrix  Equation for 
evolution of  

displacement field 

elastic constants 

forcing 

visco-plastic 
strain relaxation 

Equation for 
evolution of  

stress tensor 

Finite element solver uses semi-implicit time-stepping scheme  

(based on linearization                   ) 



Developing Tangent Linear and Adjoint 
for GeoFEST 

•  Based on existing code (but not a line-by-line 
adjoint!) 

•  Divide and concur: e.g,   

 strip off complications in the way GeoFEST forcing 
has been implemented 

  work out adjoint for time stepping scheme in terms 
of adjoints of spatial operators 

  develop adjoints of spatial operators as needed 

•  In the end, very little new code actually needed! 



Tangent 
Linear 

For n = 0, N  

Adjoint 

For n = N,N-1,…1  

Discrete Equations 



Virtually everything needed for TL and 
ADJ were already coded for forward solver 

•  Linearization of rheology  already coded for 
implicit time-step scheme 

•   Adjoint of operator B (gradients of displacement, 
to compute stress) is already coded (divergence of 
stress, to compute force balance 

•   Constitutive operators (elastic mapping D, 
linearized rheology β´) are symmetric (self adjoint) 

Comparatively minor reorganization 
of code required 



GeoFEST Forcing 

•  specified fault displacement, at specific times 
 implemented through “split nodes”   

•   specified displacement of boundary 

•   specified stress on boundary 

Focus on the last … allows use of GeoFEST 
for estimation of fault slip history (e.g., could 
be applied to mapping spatio-temporal 
structure of ETS) 



Adjoint 
displacement, 

stress 

GeoFEST fault 
slip data 
structure 

Fault slip 
history 

GeoFEST fault 
slip data 
structure 

RHS forcing of 
displacement, 
stress eqns. 

Fault slip 
history 

Estimation of fault slip history … 

Existing 
GeoFEST 

code 

New data 
structure, 
mapping Also need 

adjoints of 
forward 
mappings 



Relation to “parameter estimation” ( “inversion”) 

Unknown elastic parameters:    

Data misfit:    

data functionals solver data forcing 

Gradient of 
misfit:    

Need the same operators (in particular, the adjoint 
solver) to compute gradients of the data misfit (e.g., 
to fit parameters with conjugate gradients) 



Summary: Applications of Data Assimilation 

   Keep model trajectory 
“on track” 

   optimal interpolation of 
data (sparse in space/time) 
with physics based 
covariance/constraints 

  bring model and data into 
a common framework to 
study processes, test 
hypotheses 

Sequential “filtering” ; 
forecast 

Smoother; 
retrospective 
synthesis 



Summary: Data Assimilation Implementation 

   (Ensemble methods) 

   Variational methods: gradient based 
optimization of penalty functional (c.f., 
geophysical inverse theory) 

Need to implement 
   linearization of dynamics 

   adjoints 

   data functionals 

   optimization algorithms 



Summary: Some CIG Issues (variational bias) 

Plan ahead in coding the forward problem! 

  Modular codes simplify adjoint development 

  Clear definition of input/output states is 
essential 

  Dependence on physical parameters should 
be explicit 

Support development of modules for  

 Observation functionals (L) 

  Physical parameters (         ) 

Support for modular optimization systems? 


