C. Marone, Penn State

With: Demian Saffer, Derek Elsworth, Andre Niemeijer, Cristiano Collettini, Massimo Cocco, Paul Johnson, Sam Haines, Igor Faoro, Andy Rathbun, Jon Samuelson, Matt Ikari, Matt Knuth and Bryan Kaproth

NMCDEF, June 2009

C. Marone, Penn State

Field Studies of Exhumed and Active Faults

C. Marone, Penn State

Field Studies of Exhumed and Active Faults

C. Marone, Penn State

Lab experiments on sheared layers: synthetic and natural fault gouge

Double direct biaxial loading apparatus at Penn State

C. Marone, Penn State

C. Marone, Penn State Center for Geomechanics, Geofluids & Geohazards

With: Demian Saffer, Derek Elsworth, Andre Niemeijer, Cristiano Collettini, Massimo Cocco, Paul Johnson, Sam Haines, Igor Faoro, Andy Rathbun, Jon Samuelson, Matt Ikari, Matt Knuth and Bryan Kaproth

- Why bother with rate/state friction?
 Rate dependence, healing, triggering, complex behavior
- Fault strength and weak materials
 Fabric & surface coatings; mixtures of strong & weak materials
- 3. Fault zones of finite width Modeling, implications of rate/state properties

Frictional healing, Restrengthening Time dependence of "static" friction Aging of frictional contacts

C. A. Coulomb (1736-1806)

Coulomb-Mohr Brittle Failure

Frictional healing, Restrengthening Time dependence of "static" friction Aging of frictional contacts

C. A. Coulomb (1736-1806)

Time dependence of "static" friction

Ta	ы	e	9	J,	£.,

Table 9.1				
	T (time of repose, min)	A+mT [*] (static friction force, lbf)		
I** observation	0	A=502		
II"	2	790		
HIP'	4	866		
IV"	9	925		
V*	26	1.036		
VE	60	1,186		
VIP	960	1,535		

static friction of two pieces of well-worn oak lubricated with tallow.

Frictional Healing Stressed aging

Load point Fault surface

Steady state friction & the rate of healing vary with sliding velocity

Angular quartz particles (100-150 μm), 3 mm thick, 25 MPa normal stress. Marone, 1998

Stressed Aging

Frictional aging depends on the rate of shearing

Duality:

Dependence of friction on time of (*static*) contact. Dependence of (*dynamic*) friction on sliding rate. *Static* and *dynamic* friction are special cases of a more general behavior

referred to as Rate and State Friction

What is the mechanism of frictional healing?

Friction Law

$$\mu = \mu_{o} + a \ln(V/V_{o}) + b \ln(V_{o}\theta/D_{c})$$

State Evolution

 $d\theta/dt = 1 - V \theta/D_{c}$ $d\theta/dt = - V \theta/D_{c} \ln(V \theta/D_{c})$ Elastic Coupling $d\mu/dt = k(V_{ip} - V)$ Thermally-activated process

$$v = v_o \exp\left(\frac{\mu - \mu_o - b\varphi}{a}\right)$$
$$\dot{\varepsilon} = \dot{\varepsilon}_o \exp\left[-\frac{(Q - \tau_c \Omega)}{kT}\right]$$

Chemically-Assisted Frictional Aging; Creep at Adhesive Contact Junctions

Hydrolytic weakening causes enhanced strengthening, but kinetic friction is unchanged

Chemically-Assisted Frictional Aging; Creep at Adhesive Contact Junctions

Frye and Marone, JGR 2002

Effects of acoustic waves on stick-slip friction

Johnson, Savage, Knuth, Gomberg & Marone, Nature, 2008.

Johnson and Marone, ms. In prep, 2009

Stress drop in slow, quasi-stick-slip events scales with acoustic vibration amplitude

Earthquake Triggering by Shaking

- Fault weakening by dynamic stresses
- Clock advance
- Initial stress matters

Seismic Strain

Tremor is modulated by Love wave shear stress, Denali Rubinstein et al., 2007

Delayed triggering is expected for rate-state friction

Friction change (e.g. weakening) requires finite slip & time

Effects of Normal Stress Vibrations on Creeping Faults

Critical period is 1 to 2 sec.

Also, Phase lag. Friction response lags stressing. Could explain delayed triggering

Boettcher & Marone, JGR, 2004

These are all good reasons to bother with Rate and State Friction

- 1. Why bother with rate/state friction? Rate dependence, healing, triggering, complex behavior
- 2. Fault strength and weak materials Fabric & surface coatings; mixtures of strong & weak materials
- Fault zones of finite width Modeling, implications of rate/state properties

C. Collettini

SAFOD and surrounding rock

Phase I & II drilling, surface samples

Carpenter, Marone, and Saffer, GRL, 2009

SAFOD and surrounding rock

Carpenter, Marone, and Saffer, GRL, 2009

Moho CO2 CO2 002 30 km Lower crust Moho

Active

compression

NE

ŝ

10

20

30

40

Adriatic coast

C. Collettini

30

40

Weak fault: a fault that moves under low-resolved differential stress (σ_1 - σ_3) i.e. a fault at high angle from σ_1 direction.

Map view: weak San Andreas fault

Section view: Low Angle Normal Faults

Collecting Samples from the Zuccale Fault, Isle of Elba

Tino Marone & Claudio Collettini

Cutting Sculpting Samples for friction tests, in-situ shear geometry

	L2	L3
calcite	43%	39%
tremolite	36%	26%
talc	6%	15%
smectite	15%	20%
phyllosilicates	21%	35%

Differential thermal analysis coupled with mass spectrometer: XRPD on bulk starting sample:

XRPD on the fine fraction (< 2 µm).

Fault zone fabric and fault weakness, Submitted to Nature C. Collettini, A. Niemeijer, C. Viti and C. Marone

Numelin, T., Marone, C. and E. Kirby, Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, CA, *Tectonics*, 2007

- Why bother with rate/state friction? Rate dependence, healing, triggering, complex behavior
- Fault strength and weak materials Fabric & surface coatings; mixtures of strong & weak materials
- Fault zones of finite width Modeling, implications of rate/state properties

Model of frictional weakening and shear localization

- Fault zone of finite width; multiple, sub-parallel slip surfaces
- Surfaces obey rate and state friction
- Effective critical slip distance
- Effective fracture energy (seismological breakdown work)

Rate/State Friction

 Variations in behavior as a function of shear localization

Critical slip distance scales with:

- particle size
- shear zone width

Granular Quartz

Marone & Kilgore, 1993

Critical slip distance for shear zones of finite width

Ultrasonic Velocity of a Sheared Fault: Initial Measurements from Sites IODP/Nankai C0001 and C0002.

Velocity reflects the evolution of dynamic elastic moduli during both compaction and shear deformation.

Double-direct shear configuration

Knuth, Tobin, Saffer & Marone 2009

Ultrasonic Velocity of a Sheared Fault:

Initial Measurements from Sites IODP/Nankai C0001 and C0002.

Knuth, Tobin, Saffer & Marone 2009

Fault zone of finite width; multiple, sub-parallel slip surfaces

Surfaces obey rate and state friction

Rate and State Friction:
Positive direct effect means that any surface that slips more than another surface will be the stronger of the two

Fault zone of finite width; multiple, sub-parallel slip surfaces

Surfaces obey rate and state friction

Rate and State Friction:
Positive direct effect means that any surface that slips more than another surface will be the stronger of the two
Additional increments of slip will occur elsewhere in the

shear zone

Fault zone width varies from 0 to 60 cm.

• Parameters: a=0.012, b=0.016, L=10 μ m h=6 mm, G= 30 GPa, σ_n = 100 MPa, K_{ext} = G/h; K_{int}/K_{ext} =10; v_{ref} =1e-6 m/s Fault zone width varies from 0 to 60 cm.

• Parameters: a=0.012, b=0.016, L=10 μ m h=6 mm, G= 30 GPa, σ_n = 100 MPa, K_{ext} = G/h; K_{int}/K_{ext} =10; v_{ref} =1e-6 m/s Fault zone width varies from 0 to 60 cm.

• Parameters: a=0.012, b=0.016, L=10 μ m h=6 mm, G= 30 GPa, σ_n = 100 MPa, K_{ext} = G/h; K_{int}/K_{ext} =10; v_{ref} =1e-6 m/s Fault zone width varies from 0 to 60 cm.

 Parameters: a=0.012, b=0.016, L=10μm h=6 mm, G= 30 GPa, σ_n= 100 MPa, K_{ext}= G/h; K_{int}/K_{ext} =10; V_{ref}=1e-6 m/s Fault zone width varies from 0 to 60 cm.

Effect of fault zone width for a few velocities

Expect: $D_o \approx D_{cb} \ln(v/v_o)$ or $D_o \approx L (T/h) \ln(v/v_o)$

Critical slip distance is proportional to fault zone thickness, $D_o \approx L (T/h) \ln(v/v_o)$

Mod. Of Crust Def. Eq. Faulting: MOCDEF

1. Complex behavior from simple systems: dynamic triggering of creep and slow slip. Need a constitutive law like rate/state friction

2. Fault rocks can be very weak: Homogeneous mixtures of weak/strong materials are strong, but fabrics and clay coatings can make things extremely weak.

3. Fault Zones of finite width, dynamic complexity due to frictional response of internal slip surfaces

